Bachelor of Technology (Computer Science and Engineering) Credit Based Scheme of Studies/Examination(Modified) Semester III (w.e.f Session 2019-2020)

						Examination Schedule (Marks)			Duration of Exam	
S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	(חויג)
1	ES-227A	Principles of Programming Languages	3:0:0	3	3	75	25	0	100	3
2	PC-CS- 201A	Data Structure and Algorithms	3:0:0	3	3	75	25	0	100	3
3	ES-207A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
4	PC-CS- 203A	Object Oriented Programming	3:0:0	3	3	75	25	0	100	3
5	BS-205 A	Mathematics-III	3:0:0	3	3	75	25	0	100	3
6	HM-902A	Business Intelligence and Entrepreneurship	3:0:0	3	3	75	25	0	100	3
7	PC-CS- 205AL	Data Structure and Algorithms Lab	0:0:4	4	2	0	40	60	100	3
8	ES-209AL	Digital Electronics Lab	0:0:4	4	2	0	40	60	100	3
9	PC-CS- 207AL**	Object Oriented Programming Lab	0:0:4	4	2	0	40	60	100	3
		Total		30	24	450	270	180	900	
10	SIM-201A*	Seminar on Summer Internship	2:0:0	2	$\langle \cdot \rangle$	0	50	0	50	
					J					

Note: SIM-201A is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after 2nd semester and students will be required to get passing marks to qualify.

- **1. The Subject Code of "Object Oriented Programming Lab" has been amended as PC-CS-207AL instead of PC-CS-205AL.
 - Regarding the course SIM-201A* (Seminar on Summer Internship) is a part of the curriculum of B.Tech 2nd Semester. Since the students are admitted directly through LEET (Lateral Entrance Examination Test) in the B.Tech. 3rd Semester, therefore, they need not to undergo this course.
 - 3. In the D.M.C for LEET students it may be mentioned *NOT APPLICABLE * ADMITTED UNDER LEET

ES-227A	Principles of Programming Languages										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hour				
Purpose	To introduce the principles and paradigms of programming languages for design and implement the software intensive systems.										
Course Outo	comes (CO)										
CO 1	To introduce the and semantics	ne basic concep	ts of programmi	ng language, th	e general proble	ems and method	s related to syntax				
CO 2	To introduce th	ne structured dat	a objects, subp	ograms and pro	grammer define	d data types.					
CO 3	To outline the sequence control and data control.										
CO 4	To introduce th	ne concepts of s	torage manager	nent using progr	ramming langua	ges.					

Unit-I: Introduction, Syntax and Semantics

Introduction: A brief history, Characteristics of a good programming language, Programming language translators- compiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

Unit-II: Structured data objects, Subprograms and Programmer Defined Data Types

Structured data objects: Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

Subprograms and Programmer Defined Data Types: Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

Unit-III: Sequence Control and Data Control

Sequence Control: Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing

Data Control: Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

Unit-IV: Storage Management and Programming Languages

Storage Management: Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

Programming Languages: Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

Suggested Books:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

PC-CS201A	Data Structure and Algorithms										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hour				
Purpose	To introduce the principles and paradigms of Data Structures for design and implement the software systems logically and physically.										
Course Outcon	nes (CO)										
CO 1	To introduce data types.	the basic conce	pts of Data strue	cture , basic dat	a types ,searchir	ng and sorting	based on array				
CO 2	To introduce t	he structured da	ita types like Sta	cks and Queue a	and its basic oper	ations's implem	entation.				
CO 3	To introduce of	dynamic implem	entation of linked	l list.							
CO 4	To introduce t	he concepts of 7	Free and graph a	nd implementation	on of traversal alg	gorithms.					

Unit-1

Introduction to Data Structures, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion. **Arrays**, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices,

Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

Unit-2

Stacks: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Interconversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm.

Queues: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its Implementation, Priority Queues and Its Implementation, Applications of queues.

Unit-3

Linked Lists: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List.

Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

Unit-4

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees.

Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm.

Graphs: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First.

Suggested Books:

- Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- Data Structures and Algorithms by PAI, TMH.
- Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- Data Structures and Program Design in C by Robert Kruse, PHI,
- Shukla, Data Structures using C++, Wiley India
- Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

ES-207A	Digital Electronics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3.0	75	25	100	3 Hour			
Purpose	To learn the basic methods for the design of digital circuits and provide the fundamental concepts used in the									
	design of digital systems.									
Course Out	comes (CO)									
CO1	To introduce b	asic postulates	of Boolean algeb	ora and shows th	ne correlation be	etween Boole	ean expressions			
CO2	To introduce th	ne methods for s	implifying Boole	an expressions						
CO3	To outline the	formal procedur	es for the analys	is and design of	f combinational	circuits and s	sequential circuits			
CO4	To introduce th	ne concept of m	emories and prog	grammable logic	devices.					

UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES

Binary Digits, Logic Levels, and Digital Waveforms, Logic Systems-Positive and negative, Logic Operations, Logical Operators, Logic Gates-AND, OR, NOT, NAND, NOR, Exclusive-OR and Exclusive-NOR, Active high and Active low concepts, Universal Gates and realization of other gates using universal gates, Gate Performance Characteristics and Parameters.Boolean Algebra: Rules and laws of Boolean algebra, Demorgan's Theorems, Boolean Expressions and Truth Tables, Standard SOP and POS forms; Minterm and Maxterms, Canaonical representation of Boolean expressions, Duality Theorem, Simplification of Boolean Expressions, Minimization Techniques for Boolean Expressions using Karnaugh Map and Quine McCluskey Tabular method.introduction of TTL and CMOS Logic and their characteristics, Tristate gates.

UNIT II COMBINATIONAL CIRCUITS

Introduction to combinational Circuits, Adders-Half-Adder and Full-Adder, Subtractors- Half and Full Subtractor; Parallel adder and Subtractor; Look-Ahead Carry Adders. BCD adder, BCD subtractor, Parity Checker/Generator, Multiplexer, Demultiplexer, Encoder, Priority Encoder; Decoder ,BCD to Seven segment Display Decoder/Driver, LCD Display, and Comparators.

UNIT III SEQUENTIAL CIRCUITS

Introduction to Sequential Circuits, Flip-Flops: Types of Flip Flops -RS, T, D, JK; Edge triggering, Level Triggering; Flip Flop conversions; Master-Salve JK.

Introduction to shift registers, Basic Shift Register Operations, types of shift registers, Bidirectional Shift Registers, Shift Register Counters. Introduction to counters, Types of Counters-Asynchronous and synchronous counters, Up/Down Synchronous Counters, Modulo-n Counter, State table, excitation table concepts, Design of asynchronous and synchronous counters, Ring Counter, Applications of counters.

UNIT IV CONVERTER and MEMORY DEVICES

Digital to Analog Converter, Weighed Register: R-2R Ladder Network: Analog to Digital Conversion, Successive Approximation Type, Dual Slope Type.

Classification of memories - ROM: ROM organization, PROM, EPROM, EPROM, EAPROM, RAM: - RAM organization - Write operation, Read operation, Memory cycle, Timing wave forms, memory expansion, Static RAM Cell, MOSFET RAM cell structure, Dynamic RAM cell structure, Programmable Logic Devices - Programmable Logic Array (PLA), Programmable Array Logic (PAL), Implementation of PLA, PAL using ROM.

Suggested Books:

- Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 8th Edition, TMH, 2003.M.
- Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., 2003 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
- ALI, Digital Switching Systems, , TMH
- A.K. Maini, Digital Electronics, Wiley India
- John F. Wakerly, Digital Design, Fourth Edition, Pearson/PHI, 2006
- John. M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2002.
- S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 3rd Edition., Vikas Publishing House Pvt. Ltd, New Delhi, 2006
- William H. Gothmann, Digital Electronics, 2nd Edition, PHI, 1982.
- Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc, New Delhi, 2003
- Donald D. Givone, Digital Principles and Design, TMH, 2003.

PC-CS203A	Object Oriented Programming										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hour				
Purpose	To introduce the principles and paradigms of Object Oriented Programming Language for design and implement the Object Oriented System.										
Course Outcon	nes (CO)										
CO1	To introduce the b	To introduce the basic concepts of object oriented programming language and the its representation.									
CO2	To allocate dynamic implementation.	mic memory, ac	ccess private m	embers of class	s and the behav	vior of inheri	itance and its				
CO3	To introduce polyr	norphism, interfa	ace design and o	verloading of op	erator.						
CO4	To handle backu programming.	p system using	file, general p	urpose template	e and handling o	of raised exc	ception during				

Unit-1

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class

Unit-2

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors,

Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

Unit-3

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

Unit-4

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications. Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non- Type Template arguments.

Suggested Books:

- The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- Shukla, Object Oriented Programming in c++, Wiley India.
- C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- Programming with C++ By D Ravichandran, 2003, T.M.H.

BS-205A	Mathematics-III										
Lecture	Tutorial	Practical	Credit	Theory	eory Sessional Total Time		Time				
3	0	0	3.0	75	25	100	3 Hour				
Purpose	To familiarize the prospective engineers with techniques in sequence and series, multivariable calculus, and										
	ordinary differential equations.										
Course Outco	omes (CO)										
CO1	To develop t	he tool of seque	ence, series an	d Fourier seri	es for learning a	idvanced Engir	neering Mathematics.				
CO2	To introduce	effective mathe	ematical tools for	or the solutior	is of differential	equations that	model physical processes.				
CO3	To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.										
CO4	To familiarize the student with calculus of vector functions that is essential in most branches of engineering.										

UNIT-I

Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test).

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

UNIT-II

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-III

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar) Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-IV

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence and Curl and their properties, Directional derivative. Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

Suggested Books:

- G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India, 2009.
- S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- G.F. Simmons and S.G. Krantz, Differential Equations, Tata McGraw Hill, 2007.

HM-902A		Business Intelligence and Entrepreneurship										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3.0	75	25	100	3					
Purpose	To make the	students convers	ant with the bas	sics concepts in m	anagement thereb	by leading to	nurturing their					
	managerial s	kills.										
Course Outcor	nes (CO)											
CO1	Students will be able understand who the entrepreneurs are and what competences needed to become an											
	Entrepreneur											
CO2	Students will	be able understa	nd insights into	the management, required for small	opportunity search	, identificatior	n of a Product;					
CO3	Students car	be able to write	a report and do	o oral presentation	on the topics suc	h as product	identification,					
	business idea, export marketing etc.											
CO4	Students will	be able to know th	e different finan	cial and other assis	tance available for	the small indu	ustrial units.					

Unit –I

Entrepreneurship: Concept and Definitions; Entrepreneurship and Economic Development; Classification and Types of Entrepreneurs; Entrepreneurial Competencies; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Manager Vs. Entrepreneur, Entrepreneurial challenges.

Unit -II

Opportunity / Identification and Product Selection: Entrepreneurial Opportunity Search and Identification; Criteria to Select a Product; Conducting Feasibility Studies; Sources of business ideas, Marketing Plan : Conducting of Marketing Research, Industry Analysis, Competitor analysis, market segmentation and positioning, building a marketing plan, marketing mix, launching a new product; export marketing, Methods of Project Appraisal, Project Report Preparation; Specimen of Project Report; Project Planning and Scheduling using Networking Techniques of PERT / CPM.

Unit –III

Small Enterprises and Enterprise Launching Formalities : Definition of Small Scale; Rationale; Objective; Scope; SSI; Registration; NOC from Pollution Board; Machinery and Equipment Selection , Role of SSI in Economic Development of India; major problem faced by SSI,MSMEs – Definition and Significance in Indian Economy; MSME Schemes, Challenges and Difficulties in availing MSME Schemes.

Unit –IV

Role of Support Institutions and Management of Small Business : DIC; SIDO; SIDBI; Small Industries Development Corporation (SIDC); SISI; NSIC; NISBUD; State Financial Corporation SIC; Venture Capital : Concept, venture capital financing schemes offered by various financial institutions in India.

Špecial Issues for Entrepreneurs: Legal issues – Forming business entity, requirements for formation of a Private/Public Limited Company, Entrepreneurship and Intellectual Property Rights: IPR and their importance. (Patent, Copy Right, Trademarks), Case Studies-At least one in whole course.

Note:

- Case studies of Entrepreneurs successful, failed, turnaround ventures should be discussed in the class.
- Exercises / activities should be conducted on 'generating business ideas' and identifying problems and opportunities.
- Interactive sessions with Entrepreneurs, authorities of financial institutions, Government officials should be organized

Suggested Readings:

- "Entrepreneurship development small business enterprises", Pearson, Poornima M Charantimath, 2013.
- Roy Rajiv, "Entrepreneurship", Oxford University Press, 2011.
- "Innovation and Entrepreneurship", Harper business- Drucker. F, Peter, 2006.
- "Entrepreneurship", Tata Mc-graw Hill Publishing Co.ltd new Delhi- Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A. Shepherd, 8th Edition, 2012
- Enterpreneurship Development- S.Chand and Co., Delhi- S.S.Khanka 1999
- Small-Scale Industries and Entrepreneurship. Himalaya Publishing House, Delhi –Vasant Desai 2003.
- Entrepreneurship Management -Cynthia, Kaulgud, Aruna, Vikas Publishing House, Delhi, 2003.

PC-CS205AL			Data Str	ucture and Alg	orithms Lab						
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	4	2.0	40	60	100	3				
Purpose	To introduc	To introduce the principles and paradigms of Data Structures for design and implement the software									
	systems log	systems logically and physically.									
Course Outcomes (CO)											
CO1	To introduc	To introduce the basic concepts of Data structure, basic data types, searching and sorting based on array									
	data types.	data types.									
CO2	To introduc	e the structured of	lata types like S	tacks and Queu	e and its basic ope	eration's implem	entation.				
CO3	To introduc	e dynamic impler	nentation of link	ed list.							
CO4	To introduc	e the concepts of	Tree and graph	and implement	ation of traversal a	algorithms.					
1. Write	a program for B	inary search met	hods.								
2. Write	a program for in	sertion sort, sele	ction sort and b	ubble sort.							
3. Write	a program to im	program to implement Stack and its operation.									
4. Write	Write a program for quick sort.										
5. Write	a program for m	ierge sort.									

6. Write a program to implement Queue and its operation.

7. Write a program to implement Circular Queue and its operation.

8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.

9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.

10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.

11. Write a program to implement insertion, deletion and traversing in B tree

N.E.I.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

ES-209AL	Digital Electronics Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time			
0	0	4	2.0	40	60	100	3			
Purpose	To learn the basic methods for the design of digital circuits and systems.									
Course Outco	omes (CO)									
CO1	To Familiariza	tion with Digita	l Trainer Kit a	nd associated equ	ipment.					
CO2	To Study and	design of TTL	gates							
CO3	To learn the formal procedures for the analysis and design of combinational circuits.									
CO4	To learn the fo	ormal procedur	es for the ana	lysis and design of	f sequential cire	cuits				

LIST OF EXPERIMENTS:

- 1. Familiarization with Digital Trainer Kit and associated equipment.
- 2. Study of TTL gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
- 3. Design and realize a given function using K-Maps and verify its performance.
- 4. To verify the operation of Multiplexer and De-multiplexer.
- 5. To verify the operation of Comparator.
- 6. To verify the truth table of S-R, J-K, T, D Flip-flops.
- 7. To verify the operation of Bi-directional shift register.
- 8. To design and verify the operation of 3-bit asynchronous counter.
- 9. To design and verify the operation of asynchronous Up/down counter using J-K FFs.
- 10. To design and verify the operation of asynchronous Decade counter.
- 11. Study of TTL logic family characteristics.
- 12. Study of Encoder and Decoder.
- 13. Study of BCD to 7 segment Decoder.
- NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS207AL	Object Oriented Programming Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time			
0	0	4	2.0	40	60	100	3 Hour			
Purpose	To introduce the principles and paradigms of Object Oriented Programming Language for design and implement the Object Oriented System.									
Course Outcomes	s (CO)									
CO1	To introduce	e the basic conce	epts of object ori	ented programn	ning language and	I the its re	epresentation.			
CO2	To allocate implementa	dynamic memo tion.	ry, access priva	te members of	class and the be	havior of i	nheritance and its			
CO3	To introduce	e polymorphism,	interface design	and overloadin	g of operator.					
CO4	To handle b	oackup system ι	using file, gener	al purpose temp	plate and handling	g of raised	d exception during			

Q1. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power

() that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function. **Q2**. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4 Enter coordinates for P2: 5 7 Coordinates of P1 + P2 are : 8, 11

Q3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this.

Enter first number, operator, and second number: 10/3

Answer = 3.333333 Do another (Y/ N)? Y Enter first number, operator, second number 12 + 100 Answer = 112 Do another (Y/ N) ? N

Q4. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

Q5. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and cenitmetres depending on the object on display.

Q6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- · constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.
- Overload << operator to enable output through cout.
- Write a main () to test all the functions in the class.
- Q7. Consider the following class definition

```
class father {
protected : int age;
public;
father (int x) {age = x;}
virtual void iam ( )
```

{ cout < < "I AM THE FATHER, my age is : "<< age<< end1:}

PC-CS207AL

}; Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

Q8. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

Q9. A hospital wants to create a database regarding its indoor patients. The information to store include

- a) Name of the patient
- b) Date of admission
- c) Disease
- d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

Q10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string "**Executive**" followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

Q11. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

Q12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

Q13. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right side are removed in "first in first out" order. The opposite would be true if getRight () were used.

Q14. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this derive the classes

cur_acct and sav_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

a) Accept deposit from a customer and update the balance.

- b) Display the balance.
- c) Compute and deposit interest.
- d) Permit withdrawal and update the balance.
- e) Check for the minimum balance, impose penalty, necessary and update the balance.
- f) Do not use any constructors. Use member functions to initialize the class members.

Q15. Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base class, a member function get_data() to initialize baseclass data members and another member function display_area() to compute and display the area of figures. Make display_area () as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = $\frac{1}{2} * x * y$

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.