

Bachelor of Technology (Computer Science & Engineering) Scheme of Studies/Examination Semester VII

C	Course N	Callerat	I.T.D	II.a.ma/		Energia	an Calcadat		Duration
S. No	Course No.	Subject	L:1:P	HOURS/ Week	Examination Schedule			of Exam	
110.				WCCK					(Hrs.)
					Major	Minor	Practical	Total	
					Test	Test			
1	CSE 401N	Unix &	4:0:0	4	75	25	0	100	3
		Linux							
		Program-							
		ming							
2	CSE 403N	Computer	4:0:0	4	75	25	0	100	3
		Graphics							
		and							
		Animation							
3	PE-I	Elective* – I	3:0:0	3	75	25	0	100	3
4	PE-II	Elective* –	3:0:0	3	75	25	0	100	3
		II							
5	CSE 405N	Computer	0:0:2	2	0	40	60	100	3
		Graphics							
		Lab							
6	CSE 407N	Project-I**	0:0:9	9	0	100	100	200	3
7	CSE 409N	Unix &	0:0:2	2	0	40	60	100	3
		Linux							
		Program-							
		ming Lab							
8	CSE 411N	Seminar	0:0:2	2	0	100	0	100	
9	CSE 413N	Industrial				100	0	100	
		Training							
		(Viva-							
		Voce)***							
		Total		29	300	480	220	1000	

Code	PE-I	Code	PE-II
CSE-415N	Object Oriented Software Engineering	CSE-421N	Agile Software Engineering
CSE-417N	Cyber Security	CSE-423N	Big Data and Analytics
CSE-419N	Cryptography & Information Security	CSE-425N	Expert Systems

Note:

*The students will choose any two departmental electives courses out of the given elective list in 7thSemester.

**Project should be initiated in the beginning of 7thsemester, and should be completed by the end of 8thsemester with good Report and power-point Presentation etc.

***4-6 weeks hand on training completed after 6thSemester Exams.

Lesson Planning of Unix & Linux Porgamming Deptt. . CSE Semester 7th w.e.f.....04.08.2020

Designation : Assistant Professor

Subject with code : CSE 401N

Objective of Course : 1. Introduces commands and numerous programming concepts and application domains to cover important topics for implementation of the Unix programming concepts.

2.

3.

Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
Aug	User accounts	LECTURE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Aug	accessing Linux - starting and shutting processes	LECTURE	
Aug	Logging in andLogging out	LECTURE	
Aug	Unix commands like zip, unzip, pack, unpack, compress, uncompress,	LECTURE	
Aug	Shell Programming	LECTURE	
Aug	Unix file system: Linux/Unix files	LECTURE	
Aug	-DO-	LECTURE	
Aug	i-nodes and structure	LECTURE	
Aug	. file systemrelated commands	LECTURE	
Aug	file systemrelated commands	LECTURE	
Sep	Shell as command processor	LECTURE	
Sep	shell variables	LECTURE	
Sep	creating command substitution	LECTURE	
Sep	Scripts	LECTURE	
Sep	functions, conditionals, loops	LECTURE	
Sep	customizing environment	LECTURE	
Sep	Regular Expressions and Filters: Introducing regular expressions patterns	LECTURE	
Sep	syntax, character classes,	LECTURE	
Sep	quantifiers, introduction to grep, egrep	LECTURE	
Oct	Sed	LECTURE	
Oct	programming with awk	LECTURE	
Oct	programming with perl	LECTURE	
Oct	data redundancy elimination using fingerprint generation	LECTURE	
Oct	Deduplication	LECTURE	

Oct	data similarities removal using delta techniques for data	LECTURE	
	reduction storage		
Oct	-DO-	LECTURE	
Oct	parallel compression with Xdelta	LECTURE	
	utility		
Oct	The C Environment: C compiler	LECTURE	
Oct	vi editor	LECTURE	
Nov	-DO-	LECTURE	
Nov	compiler options, , managing projects	LECTURE	
Nov	memory management	LECTURE	
Nov		LECTURE	
Nov	use of makefile, cmake	LECTURE	
Nov	dependency calculations	LECTURE	
Nov	memory management – static and	LECTURE	
	dynamic memory		
Nov	static and dynamic libraries	LECTURE	
Nov	dynamic loader, debugging tools	LECTURE	
	like gdb, fixed-size and variable-		
	size blocks of data files		
Nov	chunks divisor chunking	LECTURE	
	Based Chunking and Content		
	Defined Chunking Unix based		
	open source coding.		
Nov	Processes, starting and stopping	LECTURE	
	processes, initialization processes		
Nov	rc and init files, job control - at,	LECTURE	
Dee	batch, cron, time	LECTUDE	
Dec	network files, security, privileges		
Dec	authentication, password	LECTURE	
Dec	archiving Signals and signal	IFCTURE	
	handlers, Linux I/O system	LECIUNE	
Dec	Networking tools like ping, telnet,	LECTURE	
	ftp, route, Firewalls, Backup and		
	Restore tar, cpio, dd		
Dec	Case Study: PCOMPRESS open source free software	LECTURE	

Outcome of Course: 1. To learn basic and advanced Unix Commands.

- 2. Expose the role of filters and file compression techniques.
- 3. To explore knowledge of programming language development tools
- 4. To expand knowledge of Unix/Linux system administration and networking.

(Sign. of HOD)

Lesson Planning of Interactive Computer Graphics Deptt. . CSE.. Semester 7th w.e.f...04.08.2020.

Name of Teacher	: Ms. Priyanka Kamboj
Designation	:Assistant Professor
Subject with code	: CSE-403N
Objective of Course	: 1. Introduces Computer Graphics that help in designing different kinds of

static and movable objects.

Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
Aug	Computer Graphics applications	LECTURE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Aug	Display Devices	LECTURE	
Aug	Point & Positioning Devices	LECTURE	
Aug	Plotting Techniques for point and Line	LECTURE	
Aug	Line drawing algorithms: DDA	LECTURE	
Aug	Line drawing algorithms: Bresenhams's	LECTURE	
Aug	Circle drawing algorithms	LECTURE	
Aug	Circle drawing algorithms	LECTURE	
Aug	Filled area algorithms: Scan line	LECTURE	
Aug	Polygon filling algorithms	LECTURE	
Sep	Polygon filling algorithms	LECTURE	
Sep	Boundary filled algorithms	LECTURE	
Sep	Boundary filled algorithms	LECTURE	
Sep	Window to view port	LECTURE	
	transformation		
Sep	Window to view port mapping	LECTURE	
Sep	Two Dimensional transformation:	LECTURE	
	translation, scaling, rotation, reflection and Shear		
Sep	Two Dimensional transformation: translation, scaling, rotation, reflection and Shear	LECTURE	
Sep	Homogeneous Coordinate system	LECTURE	
Sep	3-D transformation: Rotation, Shear, translation	LECTURE	
Oct	3-D transformation: Rotation, Shear, translation	LECTURE	
Oct	Numerical Problems of transformation viewing pipeline.	LECTURE	
Oct	Numerical Problems of transformation viewing pipeline.	LECTURE	

Oct	Clipping: Point & Line	LECTURE	
Oct	Clipping: Point & Line	LECTURE	
Oct	clipping algorithm, 4-bit code	LECTURE	
	algorithm		
Oct	clipping algorithm, 4-bit code	LECTURE	
	algorithm		
Oct	Cohen-Sutherland Line clipping algorithms	LECTURE	
Oct	Cohen-Sutherland Line clipping		
	algorithms		
Oct	Liang-Barsky line clipping	LECTURE	
	algorithms		
Nov	Liang-Barsky line clipping	LECTURE	
Nov		IECTUDE	
Nov	Polygon clipping		
NOV	clipping algorithm	LECTURE	
Nov	Curve clipping	LECTURE	
Nov	Text clipping.	LECTURE	
Nov	Projection		
Nov	Parallel	LECTURE	
Nov	Perspective	LECTURE	
Nov	Vanishing Points	LECTURE	
Nov	Representation of 3-D Curves and	LECTURE	
	Surfaces		
Nov	Representation of 3-D Curves and	LECTURE	
	Surfaces		
Nov	interpolation and approximation	LECTURE	
	alpines		
Dec	alpines	LECTURE	
Dec	parametric conditions	LECTURE	
Dec	Geometric continuity conditions	LECTURE	
Dec	Beizer curves and surfaces:	LECTURE	
Dec	properties of beizer curves	LECTURE	
Dec	heizersurfaces	LECTURE	
Dec	beizersurfaces	LECTURE	
Dec	Hiddon Surfaces.	IFCTUDE	
	muden Surfaces removal	LECIUNE	

- 1. Explore the background and standard line and circle drawing algorithms.
- 2. Exposure of various transformation approaches and its comparative analysis.
- 3. Illustrate Projection and clipping with explore different techniques.
- 4. Apply design principles to create different curves and explore hidden lines and surface techniques.

Lesson Planning of ...OOSE Deptt. . CSE Semester 7th w.e.f...04.08.2020

Name of Teacher : Mr. Vishal Garg

Designation :Assistant Professor

Subject with code : CSE-415N

Objective of Course : 1. To provide the thorough knowledge to use the concepts and their design attributes for Object Oriented Software Engineering approaches and platforms to solve real time problems.

Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
Aug	Design Objects	LECTURE	
Aug	Class Hierarchy, Inheritance	LECTURE	
Aug	Polymorphism,	LECTURE	
Aug	Object relationships and associations	LECTURE	
Aug	Aggregations and Object Containment	LECTURE	
Aug	Object Persistence	LECTURE	
Aug	Meta classes	LECTURE	
Aug	Object oriented systems development life cycle	LECTURE	
Aug	Software development process	LECTURE	
Aug	Object oriented systems development: a use case driven approach	LECTURE	
Sep	Object oriented systems development: a use case driven approach	LECTURE	
Sep	Object modeling techniques as software as software engineering methodology	LECTURE	
Sep	Object modeling techniques as software as software engineering methodology	LECTURE	
Sep	Rumbaugh methodology	LECTURE	
Sep	Jacobson methodology	LECTURE	
Sep	Booch methodology	LECTURE	
Sep	Patterns	LECTURE	
Sep	Frameworks	LECTURE	
Sep	Unified Modeling language	LECTURE	
Oct	Analysis Process	LECTURE	
Oct	Use-Case Driven Object Oriented Analysis	LECTURE	
Oct	Use-Case Model	LECTURE	

Oct	Object Classification Theory	LECTURE	
Oct	Different Approaches for	LECTURE	
Oct	identifying classes		
Uct	collaborators	LECTURE	
Oct	classes, responsibilities and	LECTURE	
	collaborators		
Oct	identifying Object Relationships	LECTURE	
Oct	attributes and Methods	LECTURE	
Oct	super-sub class relationship	LECTURE	
Nov	Apart of Relationship-	LECTURE	
	Aggregation		
Nov	Class Responsibilities and Object	LECTURE	
	Responsibilities		
Nov	Class Responsibilities and Object Responsibilities	LECTURE	
Nov	Object Classification Theory	LECTURE	
Nov	Object Oriented design process,	LECTURE	
	Corollaries	LLCICKL	
Nov	design axioms, design patterns	LECTURE	
Nov	object oriented design	LECTURE	
	philosophies		
Nov	UML Object Constraint Language	LECTURE	
Nov	Designing Classes: The Process,	LECTURE	
Nov	Class Visibility, Refining	LECTURE	
	Attributes		
Nov	Designing Methods and Protocols	LECTURE	
Nov	Packages and managing classes	LECTURE	
Dec	Designing interface objects	LECTURE	
Dec	View layer interface design	LECTURE	
Dec	Macro level interface design	LECTURE	
	process.		
Dec	Micro level interface design	LECTURE	
	process		

1. To learn the basic concepts of object oriented systems and software engineering.

2. To get exposure of various object modeling methodologies, tools for analyzing and designing software based systems using UML.

3. To explore problems using Use Cases, analyzing relations, responsibilities and collaborations among classes and their behavior in problem domain.

4. To evaluate object oriented design processes using models, design patterns, interfaces designs and communication mechanisms for performing required tasks.

Lesson Planning of Expert Systems Deptt. .CSE. Semester 7th w.e.f 04.08.2020

Name of Teacher :

Designation

Subject with code : CSE-425N

:

Objective of Course : 1. In this course the student will learn the methodologies used to transfer the knowledge of a human expert into an intelligent program that can be used to solve real-time problems.

Week & Month Aug	Topic / Chapter Covered Introduction to AI programming languages	Academic Activity LECTURE	Test/Assignment
Aug	Blind search strategies, Breadth	LECTURE	
Aug	first – Depth first Heuristic search techniques Hill Climbing – Best first	LECTURE	
Aug	A Algorithm, AO* algorithm	LECTURE	
Aug	Game tress, Min-max algorithms,	LECTURE	
Aug	game playing – Alpha beta pruning. Knowledge representation issues predicate logic – logic programming	LECTURE	
Aug	-DO-	LECTURE	
Aug	Semantic nets- frames and inheritance	LECTURE	
Aug	constraint propagation;	LECTURE	
Aug	Representing Knowledge using rules	LECTURE	
Sep	Rules based deduction systems	LECTURE	
Sep	REVISION OF UNIT -I	LECTURE	
Sep	Introduction to Expert Systems	LECTURE	
Sep	Architecture of expert system	LECTURE	
Sep	Representation and organization of knowledge	LECTURE	
Sep	-DO-	LECTURE	
Sep	Basics characteristics, and types of problems handled by expert systems	LECTURE	
Sep	-DO-	LECTURE	
Sep	Techniques of knowledge representations in expert systems	LECTURE	
Oct	-DO-	LECTURE	
Oct	-DO-	LECTURE	
Oct	knowledge engineering	LECTURE	
Oct	System-building aids	LECTURE	

Oct	support facilities	LECTURE	
Oct	stages in the development of	LECTURE	
	expert		
	systems		
Oct	-DO-	LECTURE	
Oct	REVISION OF UNIT -II	LECTURE	
Oct	Expert system development	LECTURE	
Oct	-DO-	LECTURE	
Nov	-DO-	LECTURE	
Nov	Selection of tool	LECTURE	
Nov	Acquiring Knowledge	LECTURE	
Nov		LECTURE	
Nov	-DO-	LECTURE	
Nov	Building process	LECTURE	
Nov	REVISION OF UNIT -III	LECTURE	
Nov	Difficulties, common pitfalls in	LECTURE	
	planning		
Nov	-DO-	LECTURE	
Nov	-DO-	LECTURE	
Nov	dealing with domain expert	LECTURE	
Nov	-DO-	LECTURE	
Dec	-DO-	LECTURE	
Dec	difficulties during development	LECTURE	
Dec	-DO-	LECTURE	
Dec	-DO-	LECTURE	
Dec	REVISION OF UNIT-IV	LECTURE	

1. Examining the fundamentals and terminologies of expert system

2. To facilitate students to implement various knowledge representation techniques for acquisition and validate various structures in experts system domain.

3. Signifying AI techniques to solve social, industrial and environmental problems.

4. Application of professional aspects in multi-disciplinary approach to meet global standards towards design, realizing and manufacturing

(Sign. of HOD)

CSE-405N	Computer Graphics Lab					
Lecture	TutorialPracticalMinor TestPracticalTotalTime					
0	0 2 40 60 100 3Hrs.					
Purpose	To Design and implement various Line and Circle Drawing Algorithms.					
Course Outcomes (CO)						
CO1	To Implement basic algorithms related to Line & Circle Drawing.					
CO2	Implement various Line & Circle Drawing Algorithms.					
CO3	Hands on experiments on 2-D transformations.					
CO4	Conceptual implementation of Clipping and other drawing algorithms.					

List of Practicals:

- 1. Write a program to implement DDA line drawing algorithm.
- 2. Write a program to implement Bresenham's line drawing algorithm.
- 3. Implement the Bresenham's circle drawing algorithm.
- 4. Write a program to draw a decagon whose all vertices are connected with every other vertex using lines.
- 5. Write a program to move an object using the concepts of 2-D transformations.
- 6. Write a program to implement the midpoint circle drawing algorithmany Object Oriented Programming Languagelike Python, C++,Java.
- 7. Implement the line clipping algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 8. Implement boundary fill algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 9. Implement the depth buffer algorithm using any Object oriented language like Python, C++, Java.
- 10. Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++, Java.
- 11. Draw a Rectangle using Bresenham's and DDA Algorithm using any Object oriented language like Python, C++, Java.

Note: At least 5 to 10 more exercises are to be given by the teacher concerned.

<u>JMIETI, Radaur</u>

Lesson Framming ofDept	Lesson Planning of	Deptt	Semester w.e.f
------------------------	--------------------	-------	----------------

Name of Teacher :

Designation

Subject with code : CSE-405N

:

Objective of Course : 1. To Design and implement various Line and Circle Drawing Algorithms.

2. 3.

Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
1st	Introduction to the subject	LECTURE	
	Write a program to implement	LECTURE	
2nd	DDA line drawing algorithm.		
	Write a program to implement	LECTURE	
	Bresenham's line drawing		
3rd	algorithm.		
	Implement the Bresenham's	LECTURE	
4th	circle drawing algorithm.		
	Write a program to draw a	LECTURE	
	decagon whose all vertices are		
	connected with every other		
5th	vertex using lines		
	Write a program to move an	LECTURE	
	object using the concepts of 2-		
6th	D transformations.		
	Write a program to implement	LECTURE	
	the midpoint circle drawing		
	algorithmany Object Oriented		
	Programming Languagelike		
7th	Python, C++,Java.		
	Implement the line clipping	LECTURE	
	algorithm using any Object		
	Oriented Programming		
0.1	Language like Python, C++,		
8th	Java.		
	Implement boundary fill	LECTURE	
	algorithm using any Object		
	Uniented Programming		
044	Language like Python, C++,		
90	Java.	LECTUDE	
	algorithm using any Object	LECTURE	
	argonulli using any Object		
10th	C_{++} Leve		
1001	C++, Java.		

11th	Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++,Java.	LECTURE	
	Perform the Polygon Clipping Algorithm using any Object	LECTURE	
	oriented language like Python,		
12th	C++,Java.		
	Draw a Rectangle using	LECTURE	
	Bresenham's and DDA		
	Algorithm using any Object		
	oriented language like Python,		
13th	C++,Java.		
	Draw a Rectangle using	LECTURE	
	Bresenham's and DDA		
	Algorithm using any Object		
	oriented language like Python,		
14th	C++,Java.		
15th	Internal Viva	LECTURE	

- 1. To Implement basic algorithms related to Line & Circle Drawing.
- 2. Implement various Line & Circle Drawing Algorithms.
- 3. Hands on experiments on 2-D transformations.
- 4. Conceptual implementation of Clipping and other drawing algorithms..

(Sign. of HOD)

CSE-409N	Unix & Linux Programming Lab					
Lecture	Tutorial Practical Minor Test Practical Total Time					
0	0	2	40	60	100	3 Hrs.
Purpose	To provide experimental knowledge of Unix & Linux Programs					
Course Outcomes (CO)						
CO	Exploring knowledge by implementation of programs using UNIX/LINUX.					

List of Practicals

- 1. Familiarize with Unix/Linux logging/logout and simple commands.
- 2. Familiarize with vi editor.
- 3. Using Bash shell develops simple shell programs.
- 4. Develop advanced shell programs using grep, fgrep&egrep.
- 5. Compile and debug various C programs using different options. Content defined chunking, frequency based chunking, delta/Xdelta, Rabin Fingerprint Generator, Parallel Compression compress.
- 6. Learning of installation and upgradation of Linux operating system.
- 7. Install Linux on a PC having some other previously installed operating system. All operating systems should be usable.
- 8. As supervisor create and maintain user accounts, learn package installation, taking backups, creation of scripts for file and user management, creation of startup and shutdown scripts using at, cron etc.

Note: At least 5 to 10 more exercises are to be given by the teacher concerned.

Lesson Plann	ing ofDeptt	Se	mester w.e.f
Name of Teach	oor ·		
Name of Teach			
Designation	:		
Subject with co	ode : CSE-409N		
Objective of C	ourse : 1. To provide experim	nental knowledge of Unix	& Linux Programs
	2.		
	3.		
Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
	Introduction to the subject	LECTURE	8
	Familiarize with Unix/Linux		
1 .	logging/logout and simple		
lst	commands		
	Familiarize with Unix/Linux	LECTURE	
	commands Familiarize with vi		
2nd	editor.		
	Using Bash shell develop	LECTURE	
3rd	simple shell programs		
	Using Bash shell develop	LECTURE	
4th	simple shell programs		
	Develop advanced shell	LECTURE	
541	programs using grep, fgrep &		
Sth	egrep.	LECTUDE	
	programs using grap forap &	LECIURE	
6th	egren		
our	Compile and debug various C	LECTURE	
	programs using different	LLOTOKL	
7th	options.		
	Learning of installation and	LECTURE	
	upgradation of Linux operating		
8th	system.		
	Install, Linux on a PC having	LECTURE	
	some other previously installed		
Qth	should be usable		
Jui	Install Linux on a PC having	IFCTURE	
	some other previously installed		
	operating system. All OSs		
10th	should be usable		
	As supervisor create and	LECTURE	
	maintain user accounts, learn		
11th	package		

	installation, taking backups, creation of scripts for file and user management, creation of startup and shutdown scripts	LECTURE	
12th	using at, cron etc.		
	As supervisor create and	LECTURE	
	maintain user accounts, learn		
13th	package		
	installation, taking backups,	LECTURE	
	creation of scripts for file and		
14th	user		
	management, creation of	LECTURE	
	startup and shutdown scripts		
15th	using at, cron etc.		

1. Exploring knowledge by implementation of programs using UNIX/LINUX.

2.

3.

(Sign. of HOD)