Bachelor of Technology in (AIML)Computer Sci. & Engg.(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester I (w.e.f. session 2018-2019)

Course				Hours/	Credite		Examina	Examination Schedule(Marks)				
S.No.	No./Code Subject		L:T:P Week Credits		Major Test	Minor Test	Practical	Total	of exam(Ho urs)			
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3		
2A	ES-105A	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3		
3	BS-133A	Calculus & Linear Algebra	3:1:0	4	4	75	25	0	100	3		
4A	ES-109A	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3		
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3		
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3		
7A	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3		
8A	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3		
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/			
			12:3:10		20.0	300	200	150	650B			

BS-115	λ	A Semiconductor Physics									
L		Т	Р	Credit	Major Test	Minor Test	Total	Time			
3		1	-	4	75	25	100	3h			
Purpose	To introduce the fundamentals of solid state physics and its applications to the students.										
				Course Ou	tcomes						
CO1	To m	ake the stud	ents aware of ba	asic termin	ology of c	rystal structu	re.				
CO 2	Intro	duce the el	ementary quant	tum mecha	anics, whi	ich will be u	seful in	understanding the			
	conc	concepts of solid state physics.									
CO 3	Disc	Discussion of classical free electron theory, quantum theory and Band theory of solids.									
CO 4	Basi	cs and applie	cations of semic	onductors.							

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-117L	Α	Semiconductor Physics Lab								
L		Т	Р	Credit	Practical	Minor Test	Total	Time		
-		-	3	1.5	30	20	50	3h		
Purpo	se	To give th	ne practica	l knowledge	of handling the	sophisticated in	struments.			
				Cou	rse Outcomes					
CO To make the students familiar with the experiments related with Semiconductor Physics.										

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

ES-105A			Progra	amming for	Problem Sol	ving				
L	T P		Credit	Major	Major Minor		Time			
				Test	Test					
3	3 75 25 100 3h									
Purpose	e To familiarize the students with the basics of Computer System and C Programming									
	Course Outcomes									
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.			
CO 2	Learn to translate the algorithms to programs (in C language).									
CO 3	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use arra	ays, pointer	s and struct	ures to forn	nulate algori	ithms and p	rograms.			

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

Note: The paper setter will set the paper as per the question paper templates provided.

ES- 107LA		Programming for Problem Solving Lab											
L	Т	Р	Credit	Practica	Minor	Total	Time						
				1	Test								
-	-	2	1	30	20	50	3h						
Purpose	To Introduce students with problem solving using C Programming language												
			Cou	rse Outcome	s								
CO 1	To formula	te the algo	rithms for	simple pro	blems								
CO 2	Implement	ation of a	rrays and	functions.									
CO 3	Implement	Implementation of pointers and user defined data types.											
CO 4	Write indiv	ridual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures						
	and results												

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

BS-133 A			С	alculus and	l Linear Alge	bra				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose	To familia	rize the pro	spective er	ngineers wi	th technique	es in calculu	is, sequence & series,			
	multivaria	ble calculus	, and linear	algebra.						
			Col	urse Outcor	nes		-			
CO1	To introduce	e the idea of	of applying	differential	and integra	l calculus t	o notions of improper			
	integrals. Ap	part from so	ome applica	ations it give	les a basic	introduction	on Beta and Gamma			
<u> </u>	To introduce	the fallout	e of Pollo's	Theorem th	aat ie fundan	nontal to an	nlication of analysis to			
002	Engineering problems									
CO 3	To develop f	he essential	tool of mat	rices and lir	near algebra i	in a comprel	nensive manner			
CO 4	To familiarize	e the studen	t with vector	r space as a	n essential to	ol in most b	ranches of engineering.			
UNIT-I					(12 h	rs)				
Calculus:	dofinito and ir	noronar inta	arale: Dota a	nd Camma	functions and	their propert	ios: Applications of definite			
integrals to ev	aluate surface	areas and v	yiais. Deia a volumes of re	Nu Gamma		their propert	ies, Applications of definite			
Rolle's Theore	em Mean valu	e theorems	Indeterminat	te forms and	I 'Hospital's r	ule				
UNIT-II					(8 hrs)				
Matrices					X .	1				
Matrices, vec	tors: addition	and scala	r multiplicati	on, matrix	multiplication;	Linear sys	tems of equations, linear			
Independence	, rank of a ma	ıtrix, determir	nants, Crame	er's Rule, inv	erse of a matr	rix, Gauss eliı	nination and Gauss-Jordar			
elimination.										
UNIT-III					(10 hrs	S)				
Vector space	S Barrandanan									
Vector Space,	, linear depen	dence of ve	ctors, basis, linear transf	dimension; I	Linear transto	rmations (ma	ips), range and kernel of a			
Inear map, rai	nk and nullity,	inverse of a	inear transic	ormation, rar	1K nullity theol (10 br	rem, compos 	ation of linear maps.			
Vector space	c				(1011)	3)				
Figenvalues	eigenvectors	symmetric s	skew-symme	tric and ort	hoqonal Matri	ces eigenba	ses Diagonalization. Inner			
product space	s.	• ;		,			;			
Suggested B	ooks:									
1.ErwinKreysz	zig, Advanced	Engineering	Mathematics	s, 9th Editior	n, John Wiley	& Sons, 2006).			
2. Erwin Kreys	szig and Sanje	evAhuja, Ap	plied Mather	natics- I, Wil	ey India Publi	cation, Repri	nt 2015.			
3. G.B. Thoma	as and R.L. Fi	nney, Calculi	us and Analy	tic geometry	, 9th Edition,	Pearson, Re	orint, 2002.			
4. Veerarajan	I., Engineerir	ng Mathemat	ics for first ye	ear, Tata Mc	Graw-Hill, Nev	w Delhi, 2008). 			
5. Ramana B.	V., Higner Eng	gineering Ma	thematics, I	ata McGraw	Hill New Dein Draaka/Cala	11, 11 ^m Reprir	it, 2010.			
7 N.D. Poole, Li	near Aigebra:	A WOOdern Ir	nroduction, 2	na Eailion, t oring Matha	BIOOKS/COIE, ⊿ matics Lavmi	2000. Dublications	Poprint 2008			
8 BS Growa	lu Mahish Goy I Higher Engi	yai, A lexi Du neering Math	on of Engline	enny Maine anna Publish	naucs, Laxini Ders 36th Edit	Fublications	, Replint, 2000.			
9 V Krishnan	nurthv VP M	ainra and 11	Arora An	introduction	to Linear Aloc	abra Affiliater	1 Fast-West nress Renrin			
2005.			/ \\ \\ \ \ \ \ \		to Eniour Aige					
10. S. Lipschu	itz and M. Lips	son, Schaum	's outline of I	Linear Algeb	ra,, McGraw I	Hill Educatior	i; 3 edition (1 July 17).			

Note: The paper setter will set the paper as per the question paper templates provided.

Page | 6

Course code	ES-1	ES-109A							
Course title	Engi	Engineering Graphics &Design							
Scheme and Credits		Т	Р	Credits	Major	Minor	Tota	Time	
					Test	Test	1		
	1	2	0	3	75	25	100	3h	
		Con	$rco \Omega$	utcomoc					

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and **Projections.**

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

Introduction to Engineering Drawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales - Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined tobothplanes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Views of Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions:

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jevapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-113LA							
Coursetitle	EngineeringGraphics&Design Practice								
Scheme and Credits		Т	Р	Credit	Practical	Minor	Total	Time	
				S		Test			
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposure to the visual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of ComputerGraphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledge of the theory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify and Dimension),Drawing Area(Background, Crosshairs, Coordinate System),Dialog boxes and windows, Shortcut menus(Button Bars),The Command Line(where applicable),The Status Bar, Different methods of zoom asusedin CAD,Select and erase objects.; Isometric Views oflines, Planes, Simple and compound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits; ISO and ANSI standards forco ordinate dimension ingand tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvarious waysofdrawingcircles;

Module3:Annotations,layering&other functions:

Applyingdimensionstoobjects, applying annotation stodrawings; Setting up and use of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changing line lengths through lines(extend/lengthen);Printingdocumentstopaper modifying existing using theprintcommand; orthographic projection techniques;Drawingsectionalviewsof andprojectthetrueshapeof thesectionedsurface; compositerightregulargeometricsolids Drawing annotation, Computer-aideddesign (CAD) software modeling of parts and assemblies. Parametricand nonparametricsolid, surface, and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, including sketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization guidelines, tolerancing techniques; exercises.Dimensioning dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologiesforengineeringanalysisandtool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto

showingfoundation

buildingdrawingpractice;Drawingsectionalelevation IntroductiontoBuildingInformationModeling (BIM).

- Suggested Books(ES-113L):
 - 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
 - 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
 - 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
 - 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
 - 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
 - 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice – Hall.
 - 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
 - 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
 - 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
 - 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
 - 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
 - 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
 - 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
 - 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
 - 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
 - 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

BS-141A	Biology												
L	Т	Р	Credit	Major Test	Minor Test	Total	Time						
	1				05	400	01						
Z	1	-	3	75	25	100	<u>3h</u>						
Purpose	e To familiarize the students with the basics of Biotechnology												
Course Outcomes													
CO1	Introduc	tion to ess	entials of	life and ma	cromolecules ess	ential for grow	th and						
	Develop	nent											
CO2	Defining	the basic of	concepts o	of cell divisi	on, genes and Im	mune system							
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry												
CO4	Introduc	tion of bas	ic Concep	t of Microbi	iology & Role of B	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields							

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 10ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy-three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology : Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Microelectromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

- 1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.
- 2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.
- Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.
 Genetics by Snusted& Simmons.
- 5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.
- 6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.
- 7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.
- 8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.