	Bachelor of Technology (Computer Science & Engineering)									
	Credit BasedSchemeof Scheme of Studies/Examination									
				Semes	ter V					
S. No.	Course Code	Subject	L:T:P	Hours/ Week	Credits	Exa	Examination Schedule (Marks)			Duration of Exam (Hrs)
						Major Test	Minor Test	Practical	Total	(
1	ES-301A	Microprocessor & Interfacing	3:0:0	3	3	75	25	0	100	3
2	PC-CS- 301A	Database Management Systems	3:0:0	3	3	75	25	0	100	3
3	PC-CS- 303A	Formal Language & Automata Theory	3:0:0	3	3	75	25	0	100	3
4	PC-CS- 305A	Essential of Information Technology	3:0:0	3	3	75	25	0	100	3
5	PC-CS- 307A	Computer Organization & Architecture	2:0:0	2	2	75	25	0	100	3
6	PEC	Elective-I	3:0:0	3	3	75	25	0	100	3
7	PC-CS- 309LA	Database Management Systems Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS- 311LA	Essential of Information Technology Lab	0:0:4	4	2	0	40	60	100	3
		Total		25	21	450	230	120	800	
9	MC-904A	Energy Resources & Management	3:0:0	3	0	0	100	0	100	3
10	SIM-301A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

Lesson Planning of Formal Language & Automata Theory Deptt. CSE 5th Semester w.e.f 29-08-2022

Name of Teacher : Ms. Dimple Tamak

Designation : AP

Subject with code : PC-CS-303A

Objective of Course : To introduce formal language and automata theory and understand the challenges for theoretical computer science and its contribution to other sciences.

Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
L 1	Study and central concept of automata theory, application of finite automata(FA)	LECTURE	
L 2	Introduction of DFA and NFA	LECTURE	
L 3	FA with epsilon transition, regular expressions	LECTURE	Assignment
L 4	FA and Regular Expression(RE)	LECTURE	
L 5	Application of Regular expression and algebraic laws of regular expression.	LECTURE	
L 6	Closure properties of regular languages	LECTURE	
L 7	RE to NFA and DFA conversion and DFA to RE conversion.	LECTURE	
L 8	Equivalence of NFA and DFA automata.	LECTURE	
L 9	Minimization of NFA and DFA automata	LECTURE	Test
L 10	Parse trees , Context Sensitive Grammar	LECTURE	

L 11	Context Free Grammar and Regular Grammar	LECTURE	
L 12	Application of Context Free Grammar, Ambiguity in Grammar and Languages	LECTURE	
L 13	Closure properties of CFL ,Chomsky theorem	LECTURE	
L 14	Chomsky hierarchy, Normal form of Context Free Grammar	LECTURE	
L 15	Chomsky Normal Form , Greibach Normal form	LECTURE	Assignment
L 16	Introduction to Pumping Lemma	LECTURE	
L 17	Pumping Lemma for Context Free Languages	LECTURE	
L 18	Various applications of Pumping Lemma	LECTURE	
L 19	Introduction to Pumping Lemma in FA	LECTURE	
L 20	Minimization of FA	LECTURE	
L 21	Minimization of Recursive Languages	LECTURE	Test
L 22	Introduction to Mealey and Moore machine	LECTURE	
L 23	Definitions and design of Mealey , Moore machine	LECTURE	
L 24	Equivalence of Mealey and Moore machine	LECTURE	
L 25	Differences and designing of Mealey and Moore machine	LECTURE	
L 26	Introduction of Push down automata(PDA)	LECTURE	Assignment
L 27	Languages of PDA	LECTURE	
L 28	Equivalence of PDA and CFG	LECTURE	
L 29	Deterministic PDA	LECTURE	
L 30	Designing of PDA	LECTURE	

L 31	Applications of PDA	LECTURE	Test
L 32	Introduction to Turing Machine(TM)	LECTURE	
L 33	Programming techniques for TM	LECTURE	
L 34	Extension of TM	LECTURE	
L 35	Restricted TM	LECTURE	
L 36	Universal TM and Designing of TM	LECTURE	
L 37	Time and Tape complexity measure of TM	LECTURE	
L 38	Decidability post's correspondence problem(PCP)	LECTURE	Assignment
L 39	Rice's theorem	LECTURE	
L 40	Decidability and undecideability properties	LECTURE	
L 41	P-NP Class and completeness	LECTURE	

- 1. Understand the basic properties of formal languages and grammar.
- 2. Differentiate regular, context free, recursively enumerable languages.
- 3. Make grammars to produce string from a languages.
- 4. To develop method that analysis the dynamic behavior of discrete system.

(Sign. of HOD)

Lesson Planning of Computer Organization & Architecture CSE Deptt 5th Semester w.e.f 29-08-2022

Name of Teacher	: Ms. UpasanaSood
Designation	: ASSISTANT PROFESSOR & HEAD
Subject with code	: PC-CS-307A

Objective of Course : 1. Student will be able to understand the basic concepts of computer architecture and organization, and understand the key skills of constructing cost-effective computer systems.

2. To make students learn internal organization of various computer components

Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
L 1	Introduction to Computer Systems,	LECTURE	
L 2	Organization and architecture,	LECTURE	
L 3	Evolution and computer generations;	LECTURE	
L 4	Fixed point representation of numbers,	LECTURE	
L 5	digital arithmetic algorithms for Addition, Subtraction Booth's algorithm	LECTURE	
L 6	digital arithmetic algorithms Multiplication using Booth's algorithm	LECTURE	
L 7	Division using restoring and non-restoring algorithms.	LECTURE	ASSIGNMENT
L 8	Floating point representation with IEEE standards and its arithmetic operations.	LECTURE	TEST

3. To make students aware about concepts of pipelining

L 9	Instruction codes,	LECTURE	
L 10	stored program organization,	LECTURE	
L 11	computer registers and common bus system,	LECTURE	
L 12	computer instructions, timing and control,	LECTURE	
L 13	instruction cycle: Fetch and Decode,	LECTURE	
L 14	Register reference instructions; Memory reference instructions.	LECTURE	
L 15	Input, output and Interrupt: configuration, instructions.	LECTURE	
L 16	Program interrupt, Interrupt cycle,	LECTURE	
L 17	Micro programmed Control organization	LECTURE	
L 18	address sequencing,	LECTURE	ASSIGNMENT
L 19	micro instruction format	LECTURE	
L 20	Micro program sequencer.	LECTURE	
L 21	Central Processing Unit: General register organization,	LECTURE	
L 22	stack organization, instruction formats,	LECTURE	
L 23	addressing modes,	LECTURE	
L 24	Data transfer and manipulation, Program control.	LECTURE	
L 25	CISC and RISC: features and comparison.	LECTURE	
L 26	Pipeline and vector Processing.	LECTURE	
L 27	Parallel Processing, Pipelining,	LECTURE	
L 28	Instruction Pipeline,	LECTURE	
L 29	Basics of vector processing and Array Processors.	LECTURE	ASSIGNMENT
L 30	Input-output organization: I/O interface. I/O Bus and interface	LECTURE	

	modules,		
L 31	I/O versus Memory Bus.	LECTURE	
L 32	I/O versus Memory Bus.	LECTURE	
L 33	Asynchronous data transfer:	LECTURE	
L 34	Strobe control,	LECTURE	
L 35	Handshaking, Asynchronous serial transfer.	LECTURE	
L 36	Modes of Transfer: Programmed I/O,	LECTURE	
L 37	Interrupt driven I/O, Priority interrupt;	LECTURE	
L 38	Daisy chaining, Parallel Priority interrupt.	LECTURE	
L 39	Direct memory Access,	LECTURE	
L 40	DMA controller and transfer.	LECTURE	
L 41	Input output Processor.	LECTURE	ASSIGNMENT
L 42	CPU-IOP communication,	LECTURE	TEST
L 43	I/O channel.	LECTURE	

1. Be familiar with the functional units of the processor such as the register file and arithmetic- logical unit, and with the basics of systems topics

2. Be familiar with the design trade- offs in designing and constructing a computer processor.

3.Be familiar with the CPU design including the RISC/CISC architectures.

4. Be familiar with the basic knowledge of I/O devices and interfacing of I/O devices with computer

(Sign. of HOD)

Lesson Planning of Digital Data Communication CSE Deptt 5th

Semester w.e.f 29-08-2022

Name of Teacher : Ms. SonamKamboj

Designation : AP

Subject with code : Digital Data Communication PE-CS-T301A

Objective of Course : To provide the conceptual knowledge of data presentation and signal transmission methodologies used in data communication and networking.

	Topic / Chapter Covered	Academic	Test/Assignment
Month		Activity	
L 1	Introduction to communication	LECTURE	
L 2	Basic constituents of Communication Systems	LECTURE	
L 3	Need of modulation	LECTURE	
L 4	Amplitude modulation,	LECTURE	
L 5	modulation index,	LECTURE	
L 6	spectrum of AM wave,	LECTURE	Assignment
L 7	DSBSC modulation, SSB Modulation, vestigial side band modulation	LECTURE	
L 8	ANGLE MODULATION: Frequency modulation	LECTURE	
L 9	Phase Modulation, spectrum of FM Wave, Modulation Index	LECTURE	Test
L 10	Bandwidth of FM Signal, NBFM and WBFM.	LECTURE	
L 11	DATA ENCODING	LECTURE	
	Digital data, Digital signals: Encoding schemes:		

	NRZ-L, NRZ-I,		
L 12	Manchester-Diff-Manchester- encoding,	LECTURE	
L 13	Manchester-Diff-Manchester- encoding,	LECTURE	
L 14	Pseudoternary-Bipolar-AMI,B8ZS- HDB3	LECTURE	
L 15	PCM-Delta modulation	LECTURE	
L 16	Evaluation factors-Digital data, analog signals: Encoding Techniques	LECTURE	Assignment
L 17	Performance comparison-Analog data, digital signals: Quantization- Sampling theorem-	LECTURE	
L 18	Errors- comparison- Analog Data, analog signals	LECTURE	
L 19	Need for modulation -0 Modulation methods – Amplitude modulation- Angle modulation- Comparison.	LECTURE	
L 20	Comparison of Modulation	LECTURE	
L 21	DIGITAL DATA COMMUNICATION TECHNIQUES Asynchronous and synchronous transmission	LECTURE	
L 22	Error Detection techniques: Parity checks – Cycle redundancy checks	LECTURE	
L 23	Revision of Error Detection techniques: Parity checks – Cycle redundancy checks	LECTURE	
L 24	Checksum-Error Correcting codes: Forwards and backward error corrections,	LECTURE	Test
L 25	Transmission media. Communication Topologies.	LECTURE	
L 26	DTE & DCE interface: Characteristics of DTE- DCE interface.	LECTURE	
L 27	Interfaces: Rs-232-C, Rs-449/422, A/423-A.	LECTURE	

L 28	Revision of Communication Topology	LECTURE	
L 29	SATELITE COMMUNICATION	LECTURE	
	Multiplexing: Advantages, Types of Multiplexing		
L 30	FDM, Synchronous TDM, Statistical TDM	LECTURE	Assignment
L 31	Asynchronous TDM, Study of their characteristics.	LECTURE	
L 32	Satellite Communication Systems: Satellite parameters and configurations	LECTURE	
L 33	Capacity allocation, Frequency Division FDMA; Time Division TDMA-	LECTURE	
L 34	Capacity allocation, Frequency Division FDMA; Time Division TDMA	LECTURE	
L 35	Fixed assigned multiple access (FAMA),	LECTURE	
L 36	assign multiple access (DAMA)	LECTURE	Test
L 37	The concept of spread spectrum: FHSS, DSSS	LECTURE	
L 38	CDMA – Transmission and reception.	LECTURE	

1. To study various analog communication techniques and with their characteristics.

2. To study and understand the requirements for analog/digital data to analog/digital signal conversion techniques.

3. To study the error and flow control techniques in communication and networking.

4. To study the concept of multiplexing and applied multiple access techniques specially in satellite communication.

(Sign. of HOD) (Sign. of Teacher Concerned with date)

<u>JMIETI, Radaur</u>

Lesson Planning of Essential of Infromation Technology CSE Deptt 5th Semester w.e.f 29-08-2022

Name of Teacher : Ms. PriyankaKamboj

Designation : AP

Subject with code : PC-CS-305A

Objective of Course : To introduce the concepts of Advanced Java Programming

Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
L 1	Importance and features of Java, Concepts of Java Virtual machine (JVM)	LECTURE	
L 2	Concepts of Java Virtual machine (JVM)	LECTURE	
L 3	Keywords, Constants, Variables and data types, operators and expressions	LECTURE	
L 4	operators and expressions	LECTURE	
L 5	Control statements, Conditional statements, loops and iterations	LECTURE	Assignment
L 6	loops and iterations	LECTURE	
L 7	Class definition, adding variables and methods	LECTURE	
L 8	creating objects, constructors	LECTURE	
L 9	defining methods, calling methods	LECTURE	
L 10	Method overloading	LECTURE	
L 11	Creating an array, one and two dimensional array	LECTURE	
L 12	one and two dimensional array	LECTURE	

L 13	String array and methods String and String Buffer classes	LECTURE	
L 14	Wrapper classes. Packages and Interfaces.	LECTURE	Test
L 15	Exception handling	LECTURE	
L 16	Swing, Applet, Icons and Labels	LECTURE	
L 17	Text Fields, Buttons, button Class	LECTURE	
L 18	Check Box, Radio Buttons	LECTURE	
L 19	The Container, Panel	LECTURE	
L 20	Revision of Unit 1 &2	LECTURE	
L 21	Windows, and Frame Classes	LECTURE	Assignment
L 22	Combo Box, Tabbed Panes	LECTURE	
L 23	Scroll Panes, Trees, Tables.	LECTURE	
L 24	Introduction to Servlets	LECTURE	
L 25	Life cycle of Servlets	LECTURE	
L 26	Creating, Compiling and running servlet	LECTURE	
L 27	Reading the servlet Parameters	LECTURE	
L 28	Reading Initialization parameter	LECTURE	Test
L 29	Packages- javax.servletPackage,	LECTURE	
L 30	Handling HTTP Request	LECTURE	
L 31	Response (GET / POST Request),	LECTURE	
L 32	Cookies and Session Tracking.	LECTURE	
L 33	Collection, list, Map	LECTURE	
L 34	Tree.	LECTURE	Assignment
L 35	Hashing	LECTURE	
L 36	JDBC Fundamentals	LECTURE	

L 37	Establishing Connectivity	LECTURE	
L 38	Working with connection interface	LECTURE	
L 39	Working with statements	LECTURE	
L 40	Creating and Executing SQL statements	LECTURE	
L 41	Working with Result Set Object & Result Set Meta Data.	LECTURE	Test

1Study fundamental concepts of Java.

2 Design of user interfaces using Java applets

3 To study and implement JDBC and Jbeans

4 To study concepts of servlets and its applications

(Sign. of HOD)

Lesson Planning of Database Management System CSE Deptt 5th

Semester w.e.f 29-08-2022

Name of Teacher : Dr. Vishal Garg

Designation : AP

Subject with code : PC-CS-301A

Objective of Course : To familiarize the students with database and management system.

Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
L 1	Concept & Overview of DBMS, Data Models-, Network, Hierarchical and Relational Model	LECTURE	
L 2	Levels of abstraction	LECTURE	
L 3	Administrator, Database Users	LECTURE	Assignment
L 4	Three Schema architecture of DBMS, Application	LECTURE	
L 5	Entities, Attributes and Entity Sets	LECTURE	
L 6	Relation and Relationships sets	LECTURE	
L 7	Mapping Constraints	LECTURE	
L 8	Keys	LECTURE	
L 9	Entity-Relationship Diagram, Weak Entity Sets, Extended E-R features.	LECTURE	Test
L 10	Structure of relational Databases	LECTURE	
L 11	Relational Algebra and Relational Calculus	LECTURE	
L 12	Operations on Relational Algebra	LECTURE	

L 13	Tuple Relational Calculus, Domain Relational Calculus.	LECTURE	
L 14	Concept of DDL, DML, DCL. Basic Structure	LECTURE	
L 15	Set operations, Aggregate Functions, Null Values	LECTURE	Assignment
L 16	Domain Constraints, Referential Integrity Constraints, assertions	LECTURE	
L 17	Introduction to views,	LECTURE	
L 18	Querying, Nested Sub queries,	LECTURE	
L 19	Database security application development using SQL	LECTURE	
L 20	Stored procedures and triggers.	LECTURE	
L 21	Functional Dependency, Different anomalies in designing a Database	LECTURE	Test
L 22	Normalization using functional dependencies, Decomposition,	LECTURE	
L 23	Boyce-Codd Normal Form, 3NF, Normalization using multi-valued dependencies, 4NF, 5NF.	LECTURE	
L 24	4NF, 5NF	LECTURE	
L 25	Physical data structures, Query optimization	LECTURE	
L 26	join algorithm, statistics and cost base optimization.	LECTURE	Assignment
L 27	Transaction processing	LECTURE	
L 28	Concurrency control and Recovery Management	LECTURE	
L 29	Transaction model properties		
L 30	State serializability, lock base protocols, two phase locking.	LECTURE	
L 31	Types of Failures, Recovery Techniques, ARIES.	LECTURE	Test

L 32	Serial and Serializable Schedules- Conflict Serializability	LECTURE	
L 33	Enforcing Serializability by Locks-Locking Systems with Several Lock Modes	LECTURE	
L 34	Concurrency Control by Timestamps, validation.	LECTURE	
L 35	ACID Properties, Transaction states	LECTURE	
L 36	Serializability and Recoverability- View, Serializability	LECTURE	
L 37	Resolving Deadlocks-Distributed Databases: Commit and Lock	LECTURE	

 $1\ \text{To}\ \text{provide}\ \text{introduction}\ \text{to}\ \text{relational}\ \text{model}\ \text{and}\ \text{ER}\ \text{diagrams}.$

2 To realize about Query Processing and Transaction Processing.

3 To comprehend about the concept of functional dependencies

4 To learn the concept of failure recovery and concurrency control.

(Sign. of HOD)

PC-CS-309LA	Database Management Systems Lab						
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time
				Test			
0	0	4	2	40	60	100	3 Hours
Purpose	To familia	To familiarize the students with the basics of Data base management system.					
Course Outcomes							
CO1	To understand basic DDL commands						
CO 2	To learn about DML and DCL commands						
CO 3	To understand the SQL queries using SQL operators						
CO 4	To understand the concept of relational algebra						
CO5	To learn various queries using date and group functions						
CO6	To unders	tand the neste	ed queries				
CO7	To learn v	iew, cursors	and triggers.				

1. Write the queries for <u>Data Definition Language (DDL) in RDBMS.</u>

- 2. Write the queries for Data Manipulation Language (DML) in RDBMS.
- 3. Write the queries for Data Control Language (DCL) in RDBMS.
- 4. To perform various integrity constraints on relational database.
- 5. Create a database and perform the following operations:
 - a. Arithmetic and Relational operations
 - b. Group by & having clauses
 - c. Like predicate for pattern matching in database
- 6. Write SQL queries for relational algebra
- 7. Write SQL queries for extracting data from more than one table
- 8. Write SQL queries for sub queries, nested queries
- 9. Concepts for ROLL BACK, COMMIT & CHECK POINTS
- 10. Using two tables create a view, which shall perform natural join, equi join, outer joins.
- 11. Write a procedure for computing income tax of employee on the basic of following conditions:
 - a. if gross pay $\leq 40,000$ then I.T rate is 0%.
 - b. if gross pay>40,000 but <60000 then I.T rate is 10%.
 - c. if gross pay>60,000 but <1,00,0000 then I.T rate is 20%.
 - d. if gross pay>1,00,0000 then I.T rate is 30%.

For this purpose create a table with name, ssn, gross salary and income tax of the employee.

12. Write trigger for before and after insertion, deletion and updation process.

PC-CS-311LA	Essential of Information Technology Lab							
Lecture	Tutorial	Tutorial Practical Credit Minor Test Practical Total Time						
0	0	4	2	40	60	100	3 Hrs.	
Purpose	To introduce the concepts of Advanced Java Programming							
Course Outcomes (CO)								
CO1	Study fund	Study fundamental concepts of Java.						
CO2	Design of user interfaces using Java applets.							
CO3	To study a	To study and implement JDBC and Jbeans.						
CO4	To study concepts of servlets and its applications.							

- 1. Write a Java Package with Stack and queue classes.
- 2. Design a class for Complex numbers in Java .In addition to methods for basic operations on complex numbers, provide a method to return the number of active objects created.
- 3. Develop with suitable hierarchy, class for point, shape rectangle, square, circle, ellipse, triangle, polygenetic.
- 4. Design a simple test application to demonstrate dynamic polymorphism.
- 5. Design a java interface for ADT Stack.
- 6. Develop two different classes that implement this interface. One using array and other using linked list.
- 7. Develop a simple paint like program that can draw basic graphical primitives
- 8. Develop a scientific calculator using event driven programming.
- 9. Develop a template for linked list class along with its members in Java.
- 10. Write a program to insert and view data using Servlets