		Bachelor of Te	chnolo	gy (Compute	er Scien	ce & F	Ingine	ering)					
	Credit-Based Scheme of Studies/Examination												
	Semester VII (w.e.f. session 2021-2022)												
S. No.	Course Code	Subject	L:T:P	Hours/Week	Credits	Exa	ule	Duration of Exam (Hrs)					
						Major Test	Minor Test	Practical	Total				
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3			
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3			
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3			
4	PROJ-CS-401A	Project-II	0:0:12	12	6	0	40	60	100	3			
5	PE- LA	Elective-IV Lab	0:0:2	2	1	0	40	60	100	3			
6	PE- LA	Elective-V Lab	0:0:2	2	1	0	40	60	100	3			
	Tot	al		21	17	225	115	60	400				
7	SIM-401*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50				

PE Elective-IV	PE Elective-V
Data Mining: PE-CS-D401A	Soft Computing: PE-CS-D409A
Software Verification and Validation and	Neural Networks and Deep Learning:
Testing:: PE-CS-D403A	PE-CS-D411A
Information Retrieval: PE-CS-D405A	Object Oriented Software Engineering: PE-CS-
	D413A
Speech and Natural Processing : PE-CS-	Expert Systems: PE-CS-D415A
D407A	
OE Elective-II	
Cyber Law and Ethics: OE-CS-401A	
Bioinformatics: OE-CS-403A	
Fiber Optic Communications: OE-CS-405A	
Industrial Electrical Systems: OE-CS-407A	

Industrial Electrical Systems: OE-CS-407A The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: SIM-401 is a mandatory credit-less course in which the students will be evaluated for Summer Internship undergone after 6th semester and students will be required to get passing marks to qualify.

PE-CS-D401A		Data Mining										
Lecture	Tutorial	Interview Interview <t< th=""></t<>										
3	0	0	3	75	25	100	3 Hrs.					
Purpose	Purpose To provide the knowledge of data mining and its techniques.											
	Course Outcomes (CO)											
CO1	To learn d	ata mining c	oncepts in	n details.								
CO2	Expose the	e criteria for	data gene	eralization.								
CO3	CO3 To explore knowledge of mining associations, correlations and classification.											
CO4	To evaluat	te various ty	pes of dat	a mining.								

Unit I: Basics of Data Mining

Need for data mining, data mining as the evolution of Information technology, data mining as a step in the process of knowledge discovery, Transactional database, Major issues in data mining, data preprocessing, data cleaning, data integration, data reduction, data transformation, data warehousing and Online Analytical Processing (OLAP).

Unit II: Mining Frequent Itemsets with Associations and Correlations

Data cube technology, multidimensional data mining, multi-dimensional data analysis, Mining Frequent Patterns, Associations and Correlations: Basic concepts and methods, market basket analysis example with rule of support and confidence, frequent itemsets, closed itemsets, and association rules, frequent itemset mining methods-Apriori algorithm.

Unit III: Mining Associations and Correlations

Advanced pattern mining, mining multilevel patterns, multi-dimensional patterns, classification: basic concepts, decision tree induction, naive bayesian classification methods, rule based classification, cluster analysis: basic concepts and methods, partitioning methods, hierarchical methods, density based methods, grid based methods.

Unit IV: Data Mining Trends

Mining spatial data, mining spatiotemporal data, mining multimedia data, mining text data, mining web data, stastical data mining, data mining applications-data mining for financial data analysis, intrusion detection and prevention, retail and telecommunication industries, science and engineering, privacy, security and social impacts of data mining, data mining trends.

- J.Han, M.Kamber, Data Mining: Concepts and Techniques, Academic Press, Morgan Kanfman Publishers, 2015.
- Pieter Adrians, DolfZantinge, Data Mining, Addison Wesley 2013.
- C.S.R. Prabhu, Data Ware housing: Concepts, Techniques, Products and Applications, Prentice Hall of India, 2014.
- Berry and Lin off, Mastering Data Mining: The Art and Science of Customer Relationship Management, John Wiley and Sons, 2012.
- Seidman, Data Mining with Microsoft SQL Server, Prentice Hall of India, 2016.

PE-CS-D403A		Speech and Natural Language Processing										
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time										
3	3 0 0 3 75 25 100 3 H											
Purpose	Purpose To provide the understanding of the mathematical and linguistic foundation											
	underlying approaches to the various areas in NLP.											
		Со	urse Outco	mes (CO)								
C01	Be familia	r with syntax	x and seman	tics in NLP.								
CO2	To implen	nent various	concepts of	knowledge rep	resentation usi	ng Prolog	g.					
CO3	CO3 To classify different parsing techniques and understand semantic networks.											
CO4	To identify	y/explain var	rious applica	ations of NLP.								

Speech recognitionand speech synthesis: concept overview, key algorithms in the noisy channel paradigm. Fundamental components of Natural Language Processing: Lexicography, syntax, semantics, prosody, phonology, pragmatic analysis, world knowledge.Knowledge Representation schemes: Semantic net, Frames, Conceptual Dependency, Scripts.

Unit-II

Representing knowledge using rules: Logic Programming, Introduction to LISP and Prolog, Rules based deduction systems, General concepts in knowledge acquisition.**Syntax Analysis:** Formal Languages and grammars, Chomsky Hierarchy, Left- Associative Grammars, ambiguous grammars, resolution of ambiguities.

Unit-III

Computation Linguistics: Recognition and parsing of natural language structures- ATN and RTN, General Techniques of parsing- CKY, Earley and Tomitas algorithm.Semantics: Knowledge representation, semantics networks logic and inference pragmatics, graph models and optimization.

Unit-IV

Applications of NLP: Intelligent work processor, Machine translation, user interfaces, Man-Machine interfaces, natural language querying, tutoring and authoring systems, speech recognition, commercial use of NLP.

- Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", 2nd edition, Pearson Edu., 2013.
- James Allen, "Natural Language Understanding", Pearson Education, Second Edition, 2003.
- Ivan Bratko, "Prolog: Programming for Artificial Intelligence", 3rd Edition, Pearson Education, Fifth Impression 2009.
- G. Gazder, "Natural Language processing in prolog", Addison Wesley, 1989.

PE-CS-D405A		Information Retrieval										
Lecture	Tutorial	FutorialPracticalCreditMajor TestMinor TestTotalTime										
3	0 0 3 75 25 100 3 H											
Purpose	To provid	To provide an overview of Information Retrieval and comprehensive details about										
	various Ev	various Evaluation methods.										
		Co	ourse Outco	omes (CO)								
CO1	To provid	e an overviev	w of Inform	ation Retrieval	process and mo	odels.						
CO2	To unders	tand the expe	erimental ev	aluation of per	formance metri	ics.						
CO3	To gain kı	nowledge abo	out various	web search eng	ines.							
CO4	To unders	tand the appl	lication of a	ppropriate text	classification a	nd cluste	ring.					

Introduction: Goals and history of IR. The impact of the web on IR. The role of artificial intelligence (AI) in IR. Basic IR models: boolean and vector-space retrieval models; ranked retrieval; text similarity metrices; TF-IDF (term frequency/ inverse document frequency) weighting; cosine similarity.

Basic Tokenizing Indexing, and Implementation of Vector space Retrieval: Simple tokenizing, stop word removal, and stemming, inverted indices, efficient processing with sparse vectors, python implementation.

Unit II

Experimental evaluation of IR: performance metrics: recall, precision, and F-measure, evaluations on benchmark text collections.

Query Operations and Languages: Relevance feedback; query expansion; query languages.

Unit III

Text Representation: Word statistics; Zipf's law; porter stemmer; morphology; index term selection; using thesauri, metadata and markup languages (SGML, HTML, XML).

Web Search: search engines; spidering; metacrawlers; directed spidering; link analysis (e.g. hubs and authorities, google pagerank); shopping agents.

Unit IV

Text Categorization and Clustering: Categorization algorithms: naïve bayes; decision trees; and nearest neighbour. Clustering algorithms: agglomerative clustering; k-means; expectation maximization (EM). Applications to information filtering; organization; and relevance feedback. **Recommender System:** collaborative filtering and content based recommnadation of documents and products.

- Introduction to Information Retrieval Manning, Raghavan and Schutze, Cambridge University Press, 2008.
- Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
- Ricci, F, Rokach, L. Shapira, B.Kantor, Recommender Systems Handbook, First Edition, 2011.
- Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

PE-CS-D407A		Software Verification and Validation and Testing										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	Purpose To provide an understanding of concepts and techniques for testing software and											
	assuring its quality.											
	Course Outcomes											
CO 1	Expose the	criteria and	parameters	s for the generat	ion of test cases							
CO 2	Learn the d	lesign of test	cases and	generating test	cases.							
CO 3	Be familiar with test management and software testing activities and V&V activities.											
CO 4	Be expose techniques	-	gnificance	of software te	sting in web a	nd Obje	ct orient					

Introduction: Overview of software evolution, SDLC, Testing Process, Terminologies in Testing: Error, Fault, Failure, Verification, Validation, Difference between Verification and Validation, Definition of software testing, test cases, test oracles, testing process, limitations of testing.

Unit-II

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique.

Structural Testing: Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing.

Unit-III

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing and Slice based testing.

Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing.

Unit-IV

Overview of SQM: Concepts of Software Quality, quality attributes, software quality models: McCall, Boehm, ISO-9000, CMM.

Misellaneous Topics: Stress testing, Adhoc testing, Buddy testing, Exploratory testing, Agile and extreme testing.

- Naresh Chauhan, "Softearw Testing Principles and Practices" Oxford publications, 2012.
- William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.
- Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York, 1990.
- Louise Tamres, "Software Testing", Pearson Education Asia, 2002
- Roger S. Pressman, "Software Engineering A Practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, New Delhi, 2001.

- Boris Beizer, "Black-Box Testing Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.
- K.K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International Publishers, New Delhi, 2003.
- Marc Roper, "Software Testing", McGraw-Hill Book Co., London, 1994.

PE-CS-D409A			Soft C	Computing								
Lecture	Tutorial	CutorialPracticalCreditMajorTestMinorTestTotalTir										
3	0	0	3	75	25	100	3 Hour					
Purpose	Purpose To familiarize the students with the concepts of soft computing											
	Course Outcomes											
CO 1	Identify a	Identify and describe soft computing techniques and their roles in building										
	intelligent	machines										
CO 2	Apply fu	zzy logic a	nd reasor	ning to handle	e uncertainty	and solv	e various					
	engineerin	g problems.										
CO 3	To learn	non-traditio	nal techn	ologies and f	fundamentals of	of artific	ial neural					
	networks,	fuzzy sets, fu	zzy logic,	genetic algorith	hms.							
CO 4	Apply gen	etic algorithr	ns to comb	pinatorial optim	ization problem	ns.						

Introduction: Soft Computing and Neural Networks: Evolution of Computing: Soft Computing Constituents, Soft Vs Hard Computing, From Conventional AI to Computational Intelligence: Machine Learning Basics

Unit II

Fuzzy Logic: Fuzzy Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations. Fuzzy Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making.

Unit III

Neural Networks: Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis Function Networks: Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures, Advances in Neural networks, Implementation using Python/ Matlab

Unit IV

Genetic Algorithm (GA): Evolutionary computing, conditions for evolution, Simple Genetic Algorithm (SGA), different types of operators: Selection, Crossover, mutation and replacement, optimization problems and traditional optimization methods, differences between GA & traditional methods, Applications of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition.

- S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley India Pvt. Ltd.
- Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education.
- Jang, Sun, Mizutani, Neuro-Fuzzy and Soft computing, Pearson Education.
- Haykin, Neural networks: a comprehensive foundation, Pearson Education.
- George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, 1995.

PE-CS-D411A		Neural Networks and Deep Learning										
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time										
3	0	0 0 3 75 25 100 3										
Purpose	To provid	To provide knowledge of various artificial neural networks and deep learning										
	algorithms	algorithms for optimization										
			Course	e Outcomes								
CO 1	To learn th	ne basics of a	rtificial ne	ural networks c	concepts, various	s neural n	networks					
	architectur	e										
CO 2	To explore	knowledge	of special	types of Artific	ial neural netwo	rks						
CO 3	To underst	To understand the basics of Deep learning and its applications										
CO 4	To imprise	e about the di	fferent dee	ep learning algo	orithms							

Artificial Neural Networks: Human brain, Model of an artificial neuron, Basic concepts of neural networks, fundamentals of biological neural network and artificial neural network, evolution of neural networks, Characteristics of Neural Networks, learning methods-supervised, unsupervised and reinforcement, taxonomy of neural network architectures, terminologies-weights, bias, threshold, learning rate, applications of Neural Networks.

Unit-II

Supervised and Unsupervised Neural Networks: Hebb network theory and training algorithm, perceptron networks architecture and training algorithms, Back Propagation networks architecture and Training Algorithms, Associative Memory network architecture and Training Algorithms, Hopfield networks architecture and Training Algorithms, Counter Propagation networks architecture and Training Algorithms, adaptive resonance theory networks architecture and Training Algorithms.

Unit-III

Advanced neural networks: Kohonan self organising feature, maps architecture and training algorithm, learning vector quantization architecture and training algorithm, boltzman machine, cognitron network, neocognitron network, optical neural networks electro-optical multipliers and holographic correlators.

Unit-IV

Deep learning: Machine learning basics, simple machine learning algorithms-linear regression, underfitting and overfitting challenges in machine learning, supervised learning approach for support vector machine, Deep Forward Networks, Convolutional networks, deep recurrent networks, deep boltzmann machine, applications in speech recognition and natural language processing.

- Li Min Fu, "Neural Networks in Computer Intelligence", McGraw-Hill, Inc. 2012.
- S N Sivanandam, "Neural Networks using MATLAB 6.0", TMH, 4th. Reprint 2015.
- S N Sivanandam, "Principles of Soft Computing", 2nd. Edition, Wiley, Reprint 2014.
- Freeman J.A. & D.M. Skapura, "Neural Networks: Algorithms, Applications and Programming Techniques", Addison Wesley, Reading, Mass, 2014.
- Deep Learning (Ian J. Goodfellow, Yoshua Bengio and Aaron Courville), MIT Press, 2016.
- Deep Learning with Python: A Hands-On Introduction by Ketkar, Apress

PE-CS-D413A		Object Oriented Software Engineering										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hour					
Purpose	To provide the thorough knowledge to use the concepts and their design attributes											
	for Object	for Object Oriented Software Engineering approaches and platforms to solve real										
	time problems.											
			Course	e Outcomes								
CO 1	To learn th	e basic conce	epts of obj	ect oriented sys	stems and softwa	are engin	eering.					
CO 2	To get exp	osure of vari	ous object	t modeling met	hodologies, tool	s for ana	lyzing and					
	designing	software base	ed systems	s using UML.								
CO 3	To explore	e problems i	using Use	Cases, analyz	ting relations, 1	responsib	ilities and					
	collaborati	ons among c	lasses and	their behavior	in problem dom	ain.						
CO 4	To evalua	te object or	riented de	esign processes	s using models	s, design	patterns,					
	interfaces	designs and c	communic	ation mechanis	ms for performing	ng requir	ed tasks.					

An Overview of Object-Oriented system Development, Objects Basis, Class Hierarchy, Inheritance, Polymorphism, Object Relationships and Associations, Aggregations and Object Containment, Object Persistence, Meta-Classes, Object Oriented Systems Development Life Cycle: Software Development Process, Object Oriented Systems Development: A Use-Case Driven Approach.

Unit-II

Object Oriented Methodologies: Rumbaugh Methodology, Jacobson Methodology, BoochMethodology, Patterns, Frameworks, The Unified approach, Unified Modeling Language (UML)

Unit-III

Object Oriented Analysis Process, Use Case Driven Object Oriented Analysis, Use Case Model, Object Analysis: Classification, Classification Theory, Approaches for identifying classes, Responsibilities and Collaborators, Identifying Object Relationships, Attributes and Methods: Associations, Super-Sub Class relationships, A-Part-of-Relationships-Aggregation, Class Responsibilities, Object Responsibilities.

Unit-IV

Object Oriented Design process and Design Axioms, Corollaries, Design Patterns, Designing Classes: Object Oriented Design Philosophy, UML Object Constraint Language, Designing Classes: The Process, Class Visibility, Refining Attributes, Designing Methods and Protocols, Packages and Managing classes, View Layer: Designing Interface objects, Designing View layer Classes, Macro and Micro Level Interface Design Process.

- Ali Bahrami, Object Oriented Systems Development, McGraw Hill Publishing Company Limited, New Delhi, 2013.
- Rumbaugh et al., Object Oriented Modeling and Design, PHI, 2006.
- Robert Laganière and Timothy C. Lethbridge, Object-Oriented Software Engineering: Practical Software Development, McGraw-Hill Publishing Company Limited, New Delhi, Sixth Print 2008.

- Ivar Jacobson, MagnosChristerson, Patrick Jonsson, Gunnar Overgaard, Object-oriented Software
- Engineering: A Use Case Driven Approach, Pearson Education, New Delhi, Seventh Edition Reprint, 2009.
- David C. Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill Publishing Company Limited, New Delhi, 2013

PE-CS-D415A		Expert Systems										
Lecture	Tutorial	Yutorial Practical Credit Major Test Minor Test Total Time										
3	0 0 3 75 25 100 3 Hrs.											
Purpose	pose In this course the student will learn the methodologies used to transfer the											
	knowledge of a human expert into an intelligent program that can be used to											
	solve real-time problems.											
		С	ourse Ou	tcomes(CO)								
CO1	Examining	g the fundar	nentals an	d terminologie	es of expert syst	em.						
CO2			•		nowledge repre		*					
					in experts syste							
CO3	Signifying	g AI techniq	ues to sol	ve social, indu	strial and enviro	onmental p	oroblems.					
CO4		-	-		lisciplinary app	roach to n	neet global					
	standards	towards des	ign, realiz	zing and manuf	facturing.							

Introduction to Expert Systems: Introduction to Expert Systems, Representation and organization of knowledge, Basics characteristics, Architecture of expert system, types of problems handled by expert systems, case study of PROSPECTOR.

Unit-II

Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, System-building aids, support facilities, stages in the development of expert systems.

Unit-III

Building an Expert System: Expert system development, Selection of tool, Acquiring Knowledge, Building process.

Unit-IV

Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain expert, difficulties during development.

- Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman, 1985.
- Hayes-Roth, Lenat and Waterman: Building Expert Systems, Addison Wesley, 1983.
- Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems", Rowman & Allanheld, New Jersey, 2011.

PE—CS- D401AL		Data Mining Lab											
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time						
0	0	0 2 1 40 60 100 3hrs											
Purpose	techniques.	Learning of data mining tools and extracting knowledge by applying various data mining techniques. Also explore the different validation techniques on the given training data set to get output metrics.											
			Course O	utcomes(CC)								
CO1	Learning of	Data Mining	g tools.										
CO2	Understand	Understanding of various Data Mining Algorithms.											
CO3	Developing	the applicati	on for asso	ciation mining	, classificatior	and cluster	ing.						
CO4	Providing se	olutions for r	eal world p	roblems using	various data r	nining techn	iques.						

- 1. Study of WEKA data mining tool.
- 2. Study of ORANGE and KNIME open source data mining tools.
- 3. Develop an application to identify underlying relations between different items by extracting
- 1. association rule mining.
- 4. Develop an application for distinguishing the data classes using classification technique.
- 5. Develop an application for partitioning a set of data objects using clustering technique.
- 6. Develop an application by implementing Naive Bayes Classifier.
- 7. Develop an application by implementing Association Mining Rule based Apriori Algorithm.
- 8. Develop an application for Decision Tree from class-labeled training tuples.
- 9. Develop a Decision Tree from a given training data set.
- 10. Develop a Decision Tree with cross validation training data set.
- 11. Develop a Decision Tree by using prune method and reduced error pruning. Also show the
- 2. accuracy for cross validation trained data set.

PE—CS- D403AL		Software Verification and Validation and Testing Lab											
Lecture	Tutorial	Test											
0	0	2	1	40	60	100	3hrs						
Purpose	To gain a b	road understa	nding of th	e discipline of	software eng	ineering imp	elementation.						
			Course O	utcomes(CC)								
CO1	To underst	and the basi	c concepts	s of Software	Engineering	•							
CO2	To underst	To understand the different design techniques.											
CO3	To underst	and differen	t software	developmen	t models.								
CO4	To underst	and differen	t types of	Testing.									

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2. To identify any scenario and identify suitable software development model for the given scenario.
- 3. To classify the requirement into functional and non-functional requirements and list four functional and non functional requirements for any scenario.
- 4. Do comparative study of various software development models.
- Preparation of requirement document for standard application problems in standard format.(e.g Library Management System, Railway Reservation system, Hospital management System, University Admission system)
- 6. To identify the usage of Regression Testing.
- 7. To identify the usage of Agile Testing.
- 8. To understand the importance of SDLC and STLC process.

PE—CS- D405AL		Information Retrieval Lab								
Lecture	Tutorial	utorial Practical Credit Minor Practical Total Time								
0	0	0 2 1 40 60 100 3hrs								
Purpose	To provide	To provide an overview of Information Retrieval and implementation insight								
	about vario	about various evaluation methods.								
			Course O	utcomes(CC)					
CO1	Understand	ling about I	nformatior	n Retrieval m	odels.					
CO2	Learn expe	Learn experimental evaluation of performance matrices.								
CO3	Learn impl	Learn implementation of web search engines.								
CO4	Learn the i	mplementat	ion of text	clustering ar	nd classification	ion algorith	ms.			

- 1. Implementation of Simple tokenization and Stop-word removal on a document.
- 2. Write a program to compute similarity between two text documents.
- 3. Write a map reduce program to count the number of occurrence of each alphabetic character in a document. The count for each letter should be case-insensitive.
- 4. Write a program to parse XML text, generate web graph and compute topic specific page rank.
- 5. Write a program to implement Simple web crawler.
- 6. Implementation of Naïve Bayes algorithm.
- 7. Implementation of Decision tree algorithm.
- 8. Implementation of K-nearest neighbour algorithm.
- 9. Implementation of K- means algorithm.
- 10. Evaluate the performance matrix using any algorithm.

PE-CS- D407AL		Speech and Natural Processing							
Lecture	Tutorial	itorial Practical Credit Minor Practical Total Time							
0	0	2	1	40	60	100	3hrs		
Purpose	basics of N	The objective of Natural Language Processing lab is to introduce the students with the basics of NLP which will empower them for developing advanced NLP tools and solving practical problems in the field.							
			Course O	utcomes(CO)				
CO1	To underst	and the basi	c concepts	of Speech and	nd Natural P	rocessing.			
CO2	To understand the different word analysis techniques.								
CO3	To underst	and differen	t Speech a	nd Natural P	rocessing mo	odels.			
CO4	To underst	and differen	t types of	chunking.					

- 1. Word Analysis
- 2. Word Generation
- 3. Morphology
- 4. N-Grams
- 5. N-Grams Smoothing
- 6. POS Tagging: Hidden Markov Model
- 7. POS Tagging: Viterbi Decoding
- 8. Building POS Tagger
- 9. Chunking
- 10. Building Chunker

PECS- D409AL		Soft Computing Lab								
Lecture	Tutorial	FutorialPracticalCreditMinorPracticalTotalTimeTestTestTotalTime								
0	0	0 2 1 40 60 100 3hrs								
Purpose	complex p	Soft Computing achieves practicability, robustness, and low cost solution for complex problems in real world using neural network, fuzzy systems ,optimization approaches.								
			Course O	utcomes(CO)					
CO1	Understand	d Fuzzy Cor	cepts.							
CO2	Learn Neu	Learn Neural Network with back propagation and without back propagation.								
CO3	Learn the o	operators of	Genetic al	gorithms.						
CO4	Learn the i	mplementat	ion of Opt	imization alg	orithms.					

- 1. Write a program to implement artificial neural network with back propagation.
- 2. Write a program to implement artificial neural network without back propagation.
- 3. Implementation of operations on Fuzzy Sets.
- 3. Implement Travelling Sales man problem with genetic algorithm..
- 4. Implement Crisp partitions for real life iris dataset.
- 5. Write a program to implement Logic gates.
- 6. Implement SVM classification of Fuzzy Concepts.
- 7. Implement ABC (Artificial Bee Colony) optimization Technique.
- 8. Implement DE (Differential Evolution) algorithm.

PE—CS- D411AL		Ne	ural Networ	ks and Deep Lear	rning Lab				
Lecture	Tutorial	torial Practical Credit Minor Test Practical Total Time							
0	0	2	1	40	60	100	3hrs		
Purpose	Demonstrate knowledge and apply engineering and management principles to manage projects and in multi-disciplinary environment and use research-based knowledge and research methods including design of experiments, analysis and interpretation of data for valid conclusions.								
	L		Course Out	comes (CO)					
CO1	Apply learn Neural Netv		s on perceptr	on and apply bac	ek propagat	ion learning	g on		
CO2	Apply Feed various app		plot a Boltzn	nann machine an	d associativ	ve memory	on		
CO3	Apply different types of auto encoders with dimensionality reduction and regularization.								
CO4	Design Con Network.	volutional Ne	ural Network	and classification	on using Co	onvolutiona	l Neural		

- 1. To Write a program to implement Perceptron.
- 2. To write a program to implement AND OR gates using Perceptron.
- 3. To implement Crab Classification using pattern net Objective.
- 4. To write a program to implement Wine Classification using Back propagation.
- 5. Write a MatLab Script containing four functions Addition, Subtraction, Multiply and Divide functions.
- 6. Write a program to implement classification of linearly separable Data with a perceptron.
- 7. To study ImageNet, GoogleNet, ResNet convolutional Neural Networks.
- 8. To study Convolutional Neural Network and Recurrent Neural Network.

PE—CS- D413AL		Object Oriented Software Engineering Lab							
Lecture	Tutorial	orial Practical Credit Minor Test Practical Total Time							
0	0	2	1	40	60	100	3hrs		
Purpose	byidentifyin objectives.	ng and impleme The first step to concepts, tool	enting a set or owards this ki	t is an approach/ f objects and their nd of software de ues that are to be	r interaction velopment i	s to meet th s to learn a	ne desired nd master		
			Course Out	comes (CO)					
CO1	To learn and	understand var	ious O-O con	cepts along with th	neir applicab	ility context	s.		
CO2	To learn vari software desi	U	echniques to r	nodel different per	rspectives of	object-orie	nted		
CO3	To learn soft Problems.	ware developm	ent life cycle	for Object-Oriente	ed solutions f	for Real-Wo	orld		
CO4	Learn how to	test and docur	nent software.						

- 1. Choose any one project and Write the complete problem statement.
- 2. Write the software requirement specification document
- 3. Draw the entity relationship diagram
- 4. Draw the data flow diagrams at level 0 and level 1
- 5. Draw use case diagram
- 6. Draw activity diagram of all use cases.
- 7. Draw state chart diagram of all use cases
- 8. Draw sequence diagram of all use cases
- 9. Draw collaboration diagram of all use cases
- 10. Assign objects in sequence diagram to classes and make class diagram.

PE-CS-			E	xpert System	Lab					
D415AL										
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time			
				Test						
0	0	2	1	40	60	100	3hrs			
Purpose	In this cour	In this course the student will learn different techniques of AI and Expert system								
_	that can be used to solve real-time problems.									
	Course Outcomes(CO)									
CO1	Examining	the fundam	entals and	terminologie	es of expert s	ystem.				
CO2	Study of va	arious trends	s and issue	s related to A	AI and expert	system.				
CO3	Implement general problems using AI and expert system techniques.									
CO4	Student w system.	ill capable	to handle	real time p	problems rela	ated to AI	and expert			

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.
- 3. Write predicates One converts centigrade temperatures to
- 4. Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 5. Write a program to solve the Monkey Banana problem.
- 6. WAP to implement factorial, Fibonacci of a given number.
- 7. Write a program to solve 4-Queen problem.
- 8. Write a program to solve traveling salesman problem.
- 9. Write a program to solve water jug problem using LISP
- 10. Solve any problem using depth first search and best first search.

OE-CS-401A		Cyber Law and Ethics								
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time								
3	0	0 0 3 75 25 100 3 Hrs.								
Purpose	To provide	Fo provide an overview of Cyber Law and also explores technical, legal, and social								
	issues rela	issues related to cybercrimes, Laws Cyber Ethics								
		С	ourse Outc	omes (CO)						
CO1	Understan	d Cyber laws	s, Cyber spa	ce.						
CO2	Describe I	nformation 7	Technology	act and Related	Legislation.					
CO3	Demonstrate Electronic business and legal issues.									
CO4	Interpret C	Cyber Ethics,	significance	e and its need.						

Cyber Law: Emergence of cyber space, Cyber Jurisprudence, Jurisprudence and law, Doctrinal approach, Consensual approach, Real Approach, Cyber Ethics, Cyber Jurisdiction, Hierarchy of courts, Civil and criminal jurisdictions, CyberspaceWeb space, Web hosting and web Development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global access.

Unit II

Information Technology Act: Overview of IT Act 2000, Amendments and Limitations of IT Act, Digital Signatures, Cryptographic Algorithm, Public and Private Cryptography, Electronic Governance, Legal Recognition of Electronic Records, Legal Recognition of Digital Signature, Certifying Authorities, Cyber Crime and Offences, Network Service Providers Liability, Cyber Regulations Appellate Tribunal, Penalties and Adjudication.

Unit III

Cyber law and Related Legislation: Patent Law, Trademark Law, Copyright, Software – Copyright or Patented, Domain Names and Copyright disputes, Electronic Data Base and its Protection, IT Act and Civil Procedure Code, IT Act and Criminal Procedural Code, Relevant Sections of Indian Evidence Act, Relevant Sections of Bankers Book Evidence Act, Relevant Sections of Indian Penal Code.

Unit IV

Cyber Ethics: The Importance of Cyber Law, Significance of cyber Ethics, Need for Cyber regulations and Ethics. Ethics in Information society, Introduction to Artificial Intelligence Ethics: Ethical Issues in AI and core Principles, Introduction to Block-Chain Ethics.

- Cyber Laws: Intellectual property & E Commerce, Security- Kumar K, dominant Publisher
- Cyber Ethics 4.0, Christoph Stuckelberger, Pavan Duggal, by Globethic
- Information Security policy & Implementation Issues, NIIT, PHI
- Legal Dimensions of Cyber Space, Verma S, K, Mittal Raman, Indian Law Institute, New Delhi
- Cyber Crimes and Law Enforcement, Vasu Deva, Commonwealth Publishers, New Delhi, (2003).

OE-CS-403A		Bioinformatics							
Lecture	Tutorial	FutorialPracticalCreditMajorTestMinorTestTotalTime							
3	0	0 0 3 75 25 100 3 Hour							
Purpose	To familia	To familiarize the students with the concepts of bioinformatics.							
	Course Outcomes								
CO 1	Explain co	oncepts of bio	oinformatio	es and its signif	icance in biolog	gical data	analysis.		
CO 2	Apply vari	Apply various bioinformatics tools to manage different type of biological data.							
CO 3	Explain computational method and algorithms for biological data interpretation.								
CO 4	Classify di	ifferent types	of biologi	ical databases.					

Introduction to Bioinformatics: Introduction, outline of proteins, primary structure: the 20 amino acids – chemical structure & properties; polypeptide geometry: the folding chain, nomenclature, molecular graphics, Structure evolution and mutation genetic information- the triplet code; DNA structure Synthesis of proteins: cell biology background; transcription; RNA polymerase, introns, exons, splicing translation: ribosomes, strat/stop codons, post-translational processing

Unit-II

Computing evolution: Phylogenetic Analysis Sequence- based taxonomy: overview and assumptions, from Multiple Alignment to phylogeny Neighbor, Joining Maximum Likelyhood Vs. Parsimony, The molecular Clock, Computer Tools for patterns, mapping and phylogenetic analysis, Mathematical tools of proteins and nucleic acids, sequence- Function Relationships Sequence Homology and Conserved Regions, Conserved DNA Sequences.

Unit-III

Bioinformatics tools: Networks- WWW, CERN EMBnet; EMBL Database, SEQNET, GenBank, NLM , etc., Sequence Databases and Sequence Analysis: Genomic , CDNA EMBL database GenBank Protein sequence, Pattern recognition tools Similarity searching, secondary sources, genome databases, Molecular graphics software and other packages, To find sequences based on keywords & phrases, to grab individual sequences or whole groups of Sequences from a database

Unit-IV

Genomics: Introduction , genome scale sequencing , comparative and evolutionary genomics, microarrays, proteomics, pharmacogenomics, Development using computer tools for sequencing projects, PCR and restriction mapping practical and theoretical problems in sequencing. The challenges of whole genome sequencing, web based tools for restriction mapping, new technologies and new bioinformatics tools.

- Teresa K. Attwood, David J. Parry-Smith: Introduction to Bioinformatics, 1999, Longman Higher Education.
- S. eddy, a. Krogh, G. Mitchison, Richard Durbin: Biological sequence analysis: probabilistic models of proteins and nucleic acids, 1999, Cambridge University Press.
- Andreas Baxevanis, B.F. Francis Ouellete: Bioinformatics : a practical guide to the analysis of genes and proteins,1998,john Wiley & sons, inc
- James D. Tisdall: Beginning perl for Bioinformatics. 2001. O`reilly & Associates.
- Michael S. Wterman: Mathematical methods for DNA sequences, 1989, CRC Press.

OE-CS-405A		FIBRE OPTIC COMMUNICATIONS							
Lecture	Tutorial	Cutorial Practical Credit Major Test Minor Test Total Time							
3	0	0	3	75	25	100	3 Hrs.		
Purpose	To familia	rize the stud	dents with th	ne concepts of O	ptical commur	nication cov	vering the		
	contents o	contents of optical fibers, losses in fibers, optical sources, detectors etc.							
Course Outcomes									
CO1	Students v	Students will be able to understand the structure of fiber and the mechanism of light							
	travelling	in the fiber.							
CO2	Students v	vill be able t	o analyze va	rious losses asso	ociated with fib	pers.			
CO3	Students v	Students will learn about the optical sources and optical detecters.							
CO4	Students	Students will be able to understand the various components needed in optical							
	networks								

Introduction: Optical Fibers: Structure, Propagation within the fiber, Numerical aperture of fiber, step index and graded index fiber, Modes of propagation in the fiber, Single mode and multi mode fibers. Splices and connectors. Optical Power Launching and Coupling. Fiber-to-fiber joints.

Unit II

Losses in Optical Fiber: Rayleigh Scattering Losses, Absorption Losses, Leaky modes, Mode coupling losses, Bending Losses, Combined Losses in the fiber.

Dispersion Effect: Effect of dispersion on the pulse transmission Intermodal dispersion, Material dispersion, Wave guide dispersion, Polarization Mode Dispersion Total dispersion, Transmission rate. Dispersion Shifted Fibers, Dispersion Compensating Fibers.

Unit III

Light Sources: LEDS, Laser Action in semiconductor Lasers, Semiconductor Lasers for optical communication – Laser modes, Spectral Characteristics, Power Voltage Characteristics, Frequency response.

Detectors: P-I-N Photodiode, APD, Noise Analysis in detectors, Coherent and non-coherent detection, Infrared sensors. Bit error rate.

Unit IV

The Fiber-Optic Communication System: Design considerations of fiber optic systems: Analog and digital modulation. Optical Devices: Optical coupler, space switches, linear divider-combiners, wavelength division multiplexer and demultiplexer, optical amplifier

Optical Networks: Elements and Architecture of Fiber-Optic Network, Optical link network-single hop, multihop, hybrid and photonic networks.

- John Power, An Introduction to Fiber optic systems, McGraw Hill International.
- John Gowar, Optical communication Systems.
- R. Ramaswamy, Optical Networks, Narosa Publication
- John M. Senior, Optical Fiber Communication
- Gerd Keiser, Optical Fiber Communication

OE-CS-407A		Industrial Electrical Systems							
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time							
3	0	0 0 3 75 25 100 3 Hrs.							
Purpose	To provid	Γο provide the conceptual knowledge of various Industrial Electrical Systems.							
	Course Outcomes								
CO1	To study v	various funda	amental con	cepts of Electric	al components.				
CO2	To study a	To study and understand the residential and commercial electrical system.							
CO3	To study f	To study functions and selection of Industrial Electrical components.							
CO4	To study t	he basics an	d role of PL	C & SCADA in	automation.				

Electrical System Components: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, relays, MPCB, electric shock and electrical safety practices.

Unit II

Residential and Commercial Electrical Systems: types of residential and commercial wiring system, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, protection devices, requirements of commercial installation, earthing of commercial installation, selection and sizing of components.

Unit III

Industrial Electrical Systems: HT connection, industrial substation, transformer selection, power factor correction-kVAR calculation, type of compensation, Introduction to PCC, MCC panels. Specifications of LT breakers.

DG systems, UPS system, battery banks, sizing the DG, UPS and battery banks, selection of UPS and battery banks.

Unit IV

Industrial Electrical System Automation: Study of basic PLC, role of automation, advantages of process automation, PLC based control system design, Panel metering and Introduction to SCADA system for distribution automation.

- S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- K.B. Raina, "Electrical Design, Estimating & Costing", New Age International, 2007.
- S. Singh and R.D. Singh, "Electrical estimating & costing", Dhanpat Rai and Co., 1997. Website for IS standards.
- H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

	Bachelor of Technology (Computer Science & Engineering)									
	Credit-Based Scheme of Studies/Examination									
	Semester VIII (w.e.f. session 2021-2022)									
S. No	Course Code	Subject	L:T:P	Hours/Week	Credits	its Examination Schedule (Marks)			n of Exam	
						Major Test	Minor Test	Practical	Total	(Hrs)
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3
	PROJ-CS- 402A	Project-III	0:0:12	12	6	0	40	60	100	3
5	PE-LA	Elective-VI Lab	0:0:4	4	2	0	40	60	100	3
		Total		23	15	225	155	120	500	

Low2315225155120500The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	7
Cloud Computing: PE-CS-A402A	
Computer Graphics: PE-CS-A404A	
Software Reliability: PE-CS-A406A	
Mobile Apps Development: PE-CS-A408A	
OE Elective-III	OE Elective-IV
Cyber Security: OE-CS-402A	Web and Internet Technology: OE-CS-410A
Satellite Communication: OE-CS-404A	Automation in Manufacturing: OE-CS-412A
Social Networks Analysis & Mining: OE-CS-	IPR, Bioethics and Biosafety: OE-CS-414A
406A	
Agile Software Engineering: OE-CS-408A	Signal & Systems: OE-CS-416A

PE-CS-A402A		Cloud Computing									
Lecture	Tutorial	UtorialPracticalCreditMajor TestMinor TestTotalTime									
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To familia	To familiar the concepts of cloud services and storage to deploy various resources									
	and arbitra	ary software.									
		Course Outcomes (CO)									
CO1	Summariz	Summarize main concepts, key technologies, strengths and limitations of Cloud									
	Computin	g.									
CO2	Explore v	arious cloud	l service an	d deployment	models to util	ize diffe	rent cloud				
	services.										
CO3	Interpret v	various data,	scalability &	& cloud service	s in order to ge	et efficier	nt database				
	for cloud s	for cloud storage.									
CO4	To deal w	ith various s	ecurity threa	ats and their co	ntrolling mecha	anism for	accessing				
	safe cloud	services.									

Overview of Computing Paradigm: Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing, evolution of cloud computing, Business driver for adopting cloud computing. Cloud Computing (NIST Model): History of Cloud Computing, Cloud service providers, Properties, Characteristics & Disadvantages, Pros and Cons of Cloud Computing, Benefits of Cloud Computing, Cloud computing vs. Cluster computing vs. Grid computing, Role of Open Standards.

Unit-II

Cloud Computing Architecture: Cloud computing stack, Comparison with traditional computing architecture (client/server), Services provided at various levels, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services, Service Models (XaaS) - Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Deployment Models- Public cloud, Private cloud, Hybrid cloud, Community cloud, Cloud Architecture and open source.

Unit-III

Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing & Accounting, comparing Scaling Hardware: Traditional vs. Cloud, Economics of scaling: Benefitting enormously, Managing Data- Looking at Data, Scalability & Cloud Services, Database & Data Stores in Cloud, Large Scale Data Processing, Cloud management with Puppet. Case study: Eucalyptus, Microsoft Azure, Amazon EC2.

Unit-IV

Cloud Security: Infrastructure Security, Network level security, Host level security, Application level security, Data security and Storage, Data privacy and security Issues, Jurisdictional issues raised by Data location, Identity & Access Management, Access Control, Trust, Reputation, Risk, Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations, DROPS: Division and Replication of data in Cloud for Optimal Performance and Security.

- Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010.
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley, 2011.
- Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.
- Ronald L. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010.

PE-CS-A404A		Computer Graphics										
Lecture	Tutorial	utorial Practical Credit MajorTest MinorTest Total Time										
3	0	0 0 3 75 25 100 3 Hour										
Purpose	Introduce	Introduces Computer Graphics that help in designing different kinds of static										
	and mova	and movable objects.										
Course Outcomes												
CO 1	Explore th	e background	d and stand	lard line and ci	rcle drawing alg	gorithms.						
CO 2	Exposure	of various tra	nsformatio	on approaches a	and its compara	tive analy	vsis.					
CO 3	Illustrate H	Illustrate Projection and clipping with explore different techniques.										
CO 4	Apply des	apply design principles to create different curves and explore hidden lines and										
	surface tec	hniques.										

Computer Graphics applications, Display Devices, Point & Positioning Devices, Plotting Techniques for point and Line, Line drawing algorithms: DDA, Bresenhams's Circle drawing algorithms, Filled area algorithms: Scan line, Polygon filling algorithms, Boundary filled algorithms.

Unit-II

Window to view port transformation, Window to view port mapping, Two Dimensional transformation: translation, scaling, rotation, reflection and Shear, Homogeneous Coordinate system. 3-D transformation: Rotation, Shear, translation, Numerical Problems of transformation viewing pipeline.

Unit-III

Clipping: Point & Line clipping algorithm, 4-bit code algorithm, Cohen-Sutherland Line clipping algorithms, Liang-Barsky line clipping algorithms. Polygon clipping: Sutherland-Hodgeman Polygon clipping algorithm. Curve clipping, Text clipping. Projection: Parallel, Perspective, Vanishing Points.

Unit-IV

Representation of 3-D Curves and Surfaces: interpolation and approximation alpines, parametric conditions, Geometric continuity conditions, Beizer curves and surfaces: properties of beizer curves, beizer surfaces.

Hidden Surfaces removal: Hidden surface elimination, depth buffer algorithm, scan line coherence and area coherence algorithm, painter's algorithm

- Donald Hearn & M.Pauline Baker, Computer Graphics, 2nd Edition, Pearson Education.
- William M. Newmann & Robert F. Sproull, Principles of Interactive Computer Graphics, Tata McGraw-Hill Second Edition, New Delhi, India.
- Zhigang Xiang & Roy A Plastock, Computer Graphics, Second Edition, Schaum's Outline, Tata McGraw Hill Education Private Limited, New Delhi, India.
- Foley, van Dam, Feiner, and Hughes. Computer Graphics: Principles and Practice, 3rd edition in C.
- Hearn, D. Basker, Computer Graphics, Prentice Hall

PE-CS-A406A		Web and Internet Technology									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0										
Purpose	To gain	To gain a broad understanding of the discipline of Web engineering and its									
	application	application to the development and management of Web Applications.									
Course Outcomes (CO)											
CO1	Learn the	Learn the basic concepts of internet and its conncetivity.									
CO2	Learn abo	ut the service	es of interne	t, designing and	d its architectur	e.					
CO3	Understan	d the basic	concepts of	Python and it	ts applications	as per in	nformation				
	industry st	tandards.									
CO4	Acquaint	the latest pro	gramming	language for th	e implementat	ion of ob	ject based				
	and proce	dure based aj	oplications u	ising Python.							

Intenet, growth of internet, owners of the internet, anatomy of internet, ARPANET and internet history of the worls wide web, basic internt terminology, internet applications-commerce on the internet, governance on the internet, impact of internet on society- crime on/through the internet, the role of information architect, collaboration and communication. Organizing information, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing navigation systems, Searching systems, Searching your web site, designing the search interface.

Unit II

Setting up a connection: Hardware requirement, selection of a modem, software requirement, modem configuration, common terminologies: Node, Host, Workstation, bandwidth, interoperability, network administrator, network security, network components: servers, clients, communication medis, service options- email, News firewall etc.

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images

Unit III

Introduction to Python: Applications of python in information industry, Introduction to Python, Data Types, branching programs, control structures, array and input, iteration.

Functions and scoping: Functions and scoping, recursion and global variables. Creation, insertion and deletion of items: strings, tuples, lists and dictionaries.

Unit IV

Classes and objects-oriented programming: Abstract data types and classes, inheritance, encapsulation and information hiding. File handling, exception handling, database (MySQLdb) operation: file check, table creation, insertion and deletion of data, regular expressions-Res in Python and plotting.

Suggested Books:

• By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web",

O'Reilly Media, 2006.

- Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PE-CS-A408A		Mobile Apps Development										
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	75	25	100	3 Hrs.					
Purpose	To introdu	Γο introduce the concepts of developing the mobile applications.										
	Course Outcomes (CO)											
CO1	Be expose	d to technolo	ogy and Mol	bile apps devel	opment aspects							
CO2	Be compe	tent with the	characteriza	ation and archit	ecture of mobi	le applic	ations.					
CO3	Appreciat	ion of nuar	nces such	as native hard	lware play, lo	ocation	awareness,					
	graphics, a	graphics, and multimedia.										
CO4	Perform te	esting, signin	g, packagin	g and distributi	on of mobile ap	pps.						

Introduction to Mobility: Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, setting up the Mobile App Development environment along with an Emulator.App User Interface Designing – Mobile UI resources (Layout, UI elements, Drawable, Menu).

Unit II

Building blocks of Mobile Apps: Activity- States and Life Cycle, Interaction amongst Activities. App functionality beyond user interface - Threads, Async task, Services – States and Life Cycle, Intents: concept, types, Use of Intents to transfer various type of data, Notifications, Broadcast receivers, Content provider.

Unit III

Sprucing up Mobile Apps: Fragments: Concept, Use of fragments in Android Apps, Nested Fragments, Graphics and animation – Custom views, Canvas, Animation APIs, Multimedia – Audio/Video playback and record, Location awareness. Native data handling–file I/O, shared preferences, mobile databases such as SQLite, and enterprise data access (via Internet/Intranet).

Unit IV

Testing Mobile Apps: Debugging mobile apps, White box testing, Black box testing, and test automation of Mobile apps, JUnit for Android, Testing tools. Loading data using loaders, permissions, performance & security, firebase and admob and publish.

- Dawn Griffiths, David Griffiths, Head First Android Development, 2nd Edition, O'Reilly Media, 2017.
- Barry Burd, Android Application Development All in one for Dummies, Wiley publications, 2nd Edition 2015.
- Android Developer Fundamentals Course– Concepts (Learn to develop Android applications) Concepts Reference Developed by Google Developer Training Team, 2016.
- Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design, and Development, Prentice Hall, 2004.
- Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
- Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, 2010.

PE—CS- A402AL		Cloud Computing Lab										
Lecture	Tutorial	Tutorial PracticalCreditMinor TestPracticalTotalTime										
-	-	4	2	40	60	100	3hrs					
Purpose	Design a	Design and Implement various mobile applications using emulators and										
	learn how	learn how to Deploy applications to hand-held devices.										
		C	ourse Ou	tcomes(CO)								
CO1	Know th	e compon	ents and	structure of	mobile ap	plication	development					
	framewo	rks for And	droid bas	ed mobiles.								
CO2	Understa	ind how to	work wi	th various mo	obile applic	ation deve	elopment					
	framewo	rks.					_					
CO3	Learn the	e basic and	importai	nt design con	cepts and is	ssues of de	evelopment					
	of mobile	e applicatio	ons.	-			_					
CO4	Understa	ind the cap	abilities o	of mobile dev	rices.							

- 1. Write a program to use the API's of Hadoop to interact with it.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Show the virtual machine migration based on the certain condition from one node to the other.
- 6. Write a word count program to demonstrate the use of Map and Reduce tasks.
- 7. Find procedure to set up the one node Hadoop cluster and run simple applications like word count.

PE—CS- A404AL		Computer Graphics Lab											
Lecture	Tutorial	utorial Practical Credit Minor Test Practical Total Time											
-	-	- 4 2 40 60 100 3hrs											
Purpose	To Desig	To Design and implement various Line and Circle Drawing Algorithms.											
		C	ourse Out	tcomes(CO)									
CO1	To Imple	ement basic	algorithn	ns related to	Line & Circ	le Drawir	ıg.						
CO2	Impleme	nt various	Line & Ci	rcle Drawing	g Algorithm	s.							
CO3	Hands or	Hands on experiments on 2-D transformations.											
CO4	Conceptu	ual implem	entation o	of Clipping an	nd other dra	wing algo	rithms.						

- 1. Write a program to implement DDA line drawing algorithm.
- 2. Write a program to implement Bresenham's line drawing algorithm.
- 3. Implement the Bresenham's circle drawing algorithm.
- 4. Write a program to draw a decagon whose all vertices are connected with every other vertex using lines.
- 5. Write a program to move an object using the concepts of 2-D transformations.
- 6. Write a program to implement the midpoint circle drawing algorithm any Object Oriented Programming Language like Python, C++, Java.
- 7. Implement the line clipping algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 8. Implement boundary fill algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 9. Implement the depth buffer algorithm using any Object oriented language like Python, C++, Java.
- 10. Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++, Java.
- 11. Draw a Rectangle using Bresenham's and DDA Algorithm using any Object oriented language like Python, C++, Java.

PE-CS-A406AL		Software Reliability Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
-	-	4	2	40	60	100	3hrs				
Purpose		n this course the student will understand the working of software reliability nodels and reliability prediction models, and able to design reliability models.									
	Course Outcomes(CO)										
CO1	To study	the comput	ation met	hod for evaluat	ion of software	reliability	7				
CO2	Understa Reliabilit		anisms fo	or Evaluation T	esting methods	in Softwa	are				
CO3	Understa	nd the work	ing of So	ftware Reliabil	ity Models						
CO4	To Study	and unders	tand proc	edure of softwa	are Reliability F	Prediction					

- 1. To study the Computation of software reliability
- 2. To implement software Reliability Evaluation Testing methods
- 3. To understand the working of Functional and Operational Profiles
- 4. To understand the concept of Time Dependent Software Reliability Models
- 5. To understand the concept of Time Independent Software Reliability Models.
- 6. To study Software Reliability Modeling
- 7. To identify the role of various phases included in software Reliability Prediction
- 8. To study software Reliability Analyzing Predictive
- 9. To study software Reliability Recalibration

PE-CS-A408AL			Mobil	e Apps Deve	lopment Lab					
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time			
-	-	4	2	40	60	100	3hrs			
Purpose				onents and sor Android ba		mobile	application			
		Course Outcomes(CO)								
CO1		o understand the components and structure of mobile application evelopment frameworks for Android based mobiles.								
CO2	To under framewor		to work	x with various	s mobile appl	ication c	levelopment			
CO3	To learr	the bas	ic and	important of	design conce	epts and	l issues of			
	developn	nent of mo	bile app	lications.						
CO4	To under	stand the c	apabiliti	es and limitat	tions of mobil	le device	s.			

- 1. Develop an application that uses GUI components, Font and Colors
- 2. Develop an application that uses Layout Managers and event listeners.
- **3**. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Implement an application that implements Multi threading
- 6. Develop a native application that uses GPS location information.
- 7. Implement an application that writes data to the SD card.
- 8. Implement an application that creates an alert upon receiving a message.
- 9. Write a mobile application that creates alarm clock.
- 10. Develop a sign-in page with appropriate validation.
- 11. Develop a real life application that makes use of database.

OE-CS-402A		Cyber Security									
Lecture	Tutorial	utorial Practical Credit MajorTest MinorTest Total Time									
2	0	0	2	75	25	100	3 Hour				
Purpose	To gain a	To gain a broad understanding in order to get predictive ways out related to cyber									
	security.	security.									
			Course	e Outcomes							
CO 1	To facilita	te the basic k	nowledge	of cyber securi	ty.						
CO 2	To explore	e and sort issue	ues related	to different typ	pes of activities	in cyber	crime.				
CO 3	To get ena	o get enable to fix the various cyber attacks.									
CO 4	To deal wi	ith the digital	forensics	and related sce	narios of cyber	crimes.					

Introduction: Fundamentals of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism.

Cryptanalysis-steganography, stream and block ciphers, modern block ciphers: Block cipher principles, Shannon's theory of confusion and diffusion, fiestal structure, Data Encryption Standard (DES), strength of DES, differential and linear crypt analysis of DES, block cipher modes of operations, triple DES-AES

Unit-II

Integrity checks and authentication algorithms MD5 message digest algorithm, Secure Hash Algorithm (SHA), Digital Signatures, authentication protocols, digital signature standards (DSS), proof of digital signature algorithm, authentication application, Kerberos and X.509, directory authentication service, electronic mail security, pretty good privacy (PGP), S/MIME.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control,Hardware protection mechanisms, OS Security.

Web Security: Secure socket layer and transport layer security-secure electronic transaction (SET)-system security: Intruders-Viruses and related threats, firewall design principles, trusted systems.

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

IP Security: Architecture-Authentication header-Encapsulating security payloads, combining security associations, key management.

- Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.
- Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

OE-CS-404A			Satel	lite Communica	tion					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	2	75	25	100	3 Hrs.			
Purpose	To familia	To familiarize the students with the concepts of Satellite communication and various								
	terms, laws	erms, laws and multiple access schemes used in its working.								
		Course Outcomes								
CO1	To underst	To understand the concept of basics of satellite communication and various basic								
	laws and te	laws and terms of satellite communication.								
CO2	To underst	and the conce	ept and pro	cesses of various	s communicatio	on satellite	es used in			
	satellite con	mmunication								
CO3	To familia	rize with the	concept and	d design issues o	f satellite link o	design an	d satellite			
	access.									
CO4	To familia	rize with th	e concepts	s of Multiple a	ccess schemes	used in	ı satellite			
	communica	ation.								

Satellite Orbits: Orbital Mechanics- Kepler's laws ,locating the satellite in the Orbit, locating the satellite with respect to the earth, Orbital elements, look angle determination, Sub satellite point, Azimuth and elevation angle calculation, Orbital perturbations, Longitudinal and Inclination changes; Launches and launch vehicles-ELV's, Placing the satellite into geostationary orbit, Doppler shift, range variations, solar eclipse, sun transit outage.

Unit II

Communication Satellites: Satellite Subsystems, Attitude and Orbit Control system(AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power System, Communication Subsystems-description, Transponders, satellite antennas-basic antenna types, basic antennas in practice.

Unit III

Satellite Link Design and Satellite Access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit IV

Multiple Access Schemes: FDMA, TDMA, CDMA, DAMA; VSAT systems-basic techniques, VSAT earth station engineering, system design; DBS systems-C-band and Ku band home TV, digital DBS; satellite mobile systems; GPS

- Timothy Pratt, Satellite Communications, Wiley India edition
- Anil K Maini, Satellite Communication, Wiley India edition

OE-CS-406A				Social Networ	ks						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0 0 2 75 25 100 3 Hou									
Purpose	To study t	To study the role of Social networks and how they make convenient to access									
	informatio	nformation, provide information and communicate via social media by providing a									
	platforms	platforms for the benefit of their									
			Course	e Outcomes							
CO 1	To underst	tand the con	cept of soc	ial networking							
CO 2	To know t	he various so	cial netwo	orks and their w	orking						
CO 3	To study t	To study the frameworks of social networks									
CO 4	To extract	the informat	ion from s	ocial networks							

UNIT-I

Introduction to social networks, google page rank, link prediction, importance of acquaintances, web graph, introduction: emergence of connectedness, granovetter's strength of weak ties, triads, clustering coefficient and neighbourhood overlap, structure of weak ties, bridges, and local bridges, embeddedness, betweenness measures and graph partitioning, finding communities in a graph (Brute Force Method), community detection using Girvan Newmann algorithm, strong and weak relationship.

UNIT II

Introduction to homophily, selection and social influence, Foci closure and membership closure, Introduction to Fatman Evolutionary model, triadic closure, spatial segregation, an introduction, schelling model implementation, positive and negative relationships- introduction, structural balance, creating graph, displaying it and counting unstable triangles, equal coin distribution, random walk coin distribution

UNIT III

Matrices in social network analysis (Betweenness, centrality, equivalence relation, centralization, clustering Coefficient and structural cohesion), Diffusion in networks, Impact of communities on diffusion, cascade and clusters, introduction to hubs and authorities, hubs and authorities, page rank as a matrix operation, introduction to power law, rich get richer phenomena, implementing a random graph (Erdos Renyi Model)

UNIT IV

Rich Get Richer- The long tail, Epidemics- an introduction, simple branching process for modelling epidemics, basic reproductive number, SIR and SIS spreading models, percolation model, milgram's experiment, the generative model, decentralized search, basic of equivalence concepts in social networks.

- David Easley and Jon Kleinberg, "Networks, crowd and Markets", Cambridge University Press.
- Matthew O. Jackson, "Social and Economic Networks", Princeton University Press
- Matthew A. Russeil, "Mining the Social web", O'Reilly and SPD Second Edition New Delhi
- Hanneman, R.A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California Riverside retrieved from http://faculty.ucr.edu/~hanneman/nettext/
- John scott, Peter J. Carrington,"social network analysis", sage publishing ltd.

OE-CS-408A		Agile Software Engineering										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	0	0 0 2 75 25 100 3 Hrs.										
Purpose	Introduces	troduces the business value of adopting Agile approaches and provide										
	complete u	omplete understanding of the Agile development practices										
	Course Outcomes (CO)											
CO1	Understand	the backgro	und and	driving forces f	for taking an A	gile app	roach to					
	software dev	velopment.										
CO2	Understand	the business	value of ac	lopting Agile ap	proaches.							
CO3	Drive devel	ive development with unit tests using Test Driven Development.										
CO4	Apply desig	n principles a	and refacto	oring to achieve A	Agility.							

Fundamentals of Agile: The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools

Unit II

Agile Scrum Framework: Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management.

Unit III

Agile Testing: The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester.

Unit IV

Agile Software Design and Development: Agile design practices, Role of design Principles including Single Responsibility Principle, Open Closed Principle, Liskov Substitution Principle, Interface Segregation Principles, Dependency Inversion Principle in Agile Design, Need and significance of Refactoring, Refactoring Techniques, Continuous Integration, Automated build tools, Version control.

- Ken Schawber, Mike Beedle, Agile Software Development with Scrum, Pearson publications.
- Robert C. Martin, *Agile Software Development, Principles, Patterns and Practices*, Prentice Hall.
- Lisa Crispin, Janet Gregory, *Agile Testing: A Practical Guide for Testers and Agile Teams*, Addison Wesley.
- Alistair Cockburn, Agile Software Development: The Cooperative Game, Addison Wesley.
- Mike Cohn, User Stories Applied: For Agile Software, Addison Wesley.

OE-CS-410A	Software Quality Models								
Lecture	TutorialPracticalCreditMajor TestMinor TestTotalTime								
2	0	0	2	75	25	100	3 Hour		
Purpose	To provide an understanding of various concepts related to software quality,								
	reliability and maintenance.								
Course Outcomes									
CO 1	To understand the concept of software quality								
CO 2	To study the various quality models								
CO 3	To understand the testing and reliability concepts								
CO 4	Relation of maintenance and quality								

Software Quality: Meaning and scope, software quality factors, software quality metrics, relationship b/w quality factors and quality metrics, quality management system, software reviews, formal technical reviews, correctness proof, statistical quality assurance, clear room, software engineering, standards of software quality assurance.

Unit-II

Software Reliability: meaning and its relation with software quality, reliability modelingexponential failure time models (viz., Jelinski Moranda model, Schneidiwind's model, Musa's basic execution time model, hyberexponential model), Weibull and gamma failure time model (viz. Weibull model, S-shaped reliability growth model), and infinite failure category models (viz. Duane's model, geometric model, Muse-Okumto model). Types of failure, bath-tub Curve, Exponential law of reliability.

Unit-III

Software Testing: Meaning. Scope and its relationship with software quality, software testing techniques: white box testing, basis path testing, control structure testing and black box testing, etc. Software testing strategies: unit testing, integration testing, validation testing and system testing, etc.

Unit-IV

Software Maintenance: Concept of repair and maintenance, concept of availability and its relation with reliability and maintainability, preventive maintenance, Software maintenance, the management of reliable software, automatic error detection and error correction.

- Software Quality: Concepts and Plan, by Robert H Dunn Prentice Hall International 71
- Software Reliability: Measurement, Prediction and application by John D.Musa, McGraw Hill
- Software Reliability Engineering By Michele R Lyu, McGraw Hill
- Software Reliability By K.K. Aggarwal
- Software Reliability by H Koptez.
- C.R. Vick & C.V. Rama Moorthy: Handbook of Software Engineering CBS Publishers & Distributors, Delhi.
- Software Engineering, K K Aggarwal, New Age International Publication, New Delhi
- Mark Paulik, The capability Maturity Model-Guidelines for improving the software Process, Addison Wesley.
- Michael, Deutsch, Willis, Ronald r-Software Quality Engineering –A Total Techinical and Management approach, Prentice Hall.

OE-CS-412A	Automation in Manufacturing								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
2	0	0	2	75	25	100	3 Hour		
Purpose	The purpose of this course is to impart knowledge of production automation,								
	Robotics, flexible manufacturing, CNC programming, material handling and								
	automated storage systems.								
Course Outcomes									
CO 1	To explain the role of automation in manufacturing and Robotics in industry.								
CO 2	To describe the group technology and flexible manufacturing techniques in the								
	automated production line and manufacturing system.								
CO 3	To explain computer aided process planning and shop floor manufacturing								
	activities.								
CO 4	To develop CNC programs and understand the concept automated guided vehicle								
	and automated storage system in material handling								

Unit l

Introduction: Production system, automation in production system, manual labour in production system, automation principle and strategies, manufacturing industries and products, manufacturing operations, product facilities, product/production relationship, basic elements of an automation system, advance automation function, level of automation.

Industrial Robotics: Robot anatomy and related attributes, joint and links, common robot configuration, joint drive system, sensors in Robotics, robot control system, end effectors, grippers and tools, applications of industrial robots, material handling, processing operation, assembly and inspection, robot programming.

Unit ll

Group technology and cellular manufacturing: Part families, part classifications and coding, production flow analysis, cellular manufacturing-composite part concept, machine cell design, applications of group technology, grouping parts and machines by rank order clustering technique, arranging machines in G.T. cell.

Flexible manufacturing: Introduction, FMS components, flexibility in manufacturing-machine, product, routing operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

Unit Ill

Process planning: Introduction, manual process planning, computer aided process planning- variant, generative, decision logic decision tables, decision trees, introduction to artificial intelligence.

Shop floor control: Introduction, shop floor control features, major displays, major reports, phases of SFC, order release, order scheduling, order progress, manufacturing control, methodology, applications, shop floor data collections, types of data collection system, data input techniques, automatic data, collection system.

Unit IV

CNC basic and part programming: Introduction, historical, background, basic components of an NC steps in NC, verification of numerical control machine tool programs, classification of NC machine tool, basics of motion control and feedback for NC M/C, NC part programming, part

programming methods, modern machining system, automatically programmed tools, DNC, adaptive control.

Automated Guided Vehicle and Storage System: Functions of AGV, types of AGV, safety consideration for AGV, design of AGV, Introduction to storage system, storage system performance, storage location strategies, conventional storage method and equipment, automated storage system, fixed aisle automated storage/retrieval system, carousel storage system, analysis of storage system, fixed aisle automated storage/retrieval systems, carousel storage system.

- Automation, production system and computer integrated manufacturing- Mikell P. Groover, Pearson 4th edition.
- CAD/CAM: Computer Aided Design and manufacturing Groover- M.P. and Zimmers E. W., Prentice Hall International, New Delhi 1992
- CAD/CAM/CIM-P. Radhakrishnan, S. Subramanayan and V. Raju, New Age International (P) Ltd., New Delhi
- Computer Integrated Manufacturing- Alavudeen and Venkateswaran, Prentice Hall of India Pvt. Ltd. New Delhi.

OE-CS-414A	IPR, Bioethics and Biosafety									
Lecture	Tutorial Practical Credit Major Test Minor Test Total Time									
2	0	0	2	75	25	100	3 Hour			
Purpose	The course concentrates on technology, knowledge and business management									
	aspect of intellectual property, including patenting aspect.									
Course Outcomes										
CO 1	To provide an understanding on biosafety and risk assessment of products, ethical									
	issues in biological research									
CO 2	To introduce about the IPR and its role									
CO 3	To examine the role of Biosafety and bioethics									
CO 4	To know the procedure of applying IPR									

Biotechnology and society: Introduction to science, technology and society, issues of access-Case studies/experiences from developing and developed countries. Ownership, monopoly, traditional knowledge, biodiversity, benefit sharing, environmental sustainability, public vs. private funding, biotechnology in international relations, globalization and development divide. Public acceptance issues for biotechnology: Biotechnology and hunger: Challenges for the Indian Biotechnological research and industries

Unit II

Bioethics & legal issues: Principles of bioethics: Legality, morality and ethics, autonomy, human rights, beneficence, privacy, justice, equity etc. Expanding scope of ethics from biomedical practice to biotechnology, bioethics vs. business ethics, ethical dimensions of IPR, technology transfer and other global biotech issues. Legal, institutional and socio-economic impacts of biotechnology; biotechnology and social responsibility, Public education to increase the awareness of bioethics with regard to generating new forms of life for informed decision making-with case studies.

Unit III

Biosafety: Good Lab Practices, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels GMOs and LMOs and their environmental impact, Roles of Institutional Biosafety Committee, RCGM, GEAC etc. For GMO applications in food and agriculture Risk analysis, assessment and management

Bioethics: Bioethical issues related to Healthcare & medicine Food & agriculture Genetic engineering, The Human Genome Project and Genetic Testing Environmental problems

Unit IV

IPR, Patents and Patents Laws: Intellectual property rights-TRIP- GATT International conventions patents, Requirement of patentable novelty Methods of application of patents Legal implications Biodiversity and farmer rights Objectives of the patent system, Basic principles and general requirements of patent law, Biotechnological inventions and patent law. Legal development: Patentable subjects and protection in biotechnology, Patenting of living organisms, procedure for applying for patent Patent Infringement and related case studies Biological Patentability.

IPR and Biotechnology: Biopiracy and Bioprospecting Farmers Rights and Plant breeders rights Biodiversity.

- Biosafety in Microbiological and Biomedical Laboratories, (2009) 5th Ed, <u>www.cdc.gov/ od/</u> <u>ohs/</u> biosfty/ bmbl5/ bmbl5toc.html.
- V. Shree Krishna, (2007), Bioethics and Biosafety in Biotechnology, New Age International Pvt. Ltd. Publishers.
- Deepa Goel, ShominiParashar, (2013), IPR, Biosafety and Bioethics, Pearson.
- R. Ian Freshney, Culture of Animal Cells: a Manual of Basic Technique and Specialized Applications, 6th Ed, John Wiley & Blackwell
- Biotechnology and Safety Assessment Thomas J.A., Fuch R.L Academic Press 3rd Edition 2002
- Biological safety Principles and practices Fleming D.A., Hunt D. ASM Press 3rd. ed. 2000
- Bioethics Ben Mepham Oxford University Press 2008
- Bioethics & Biosafety R Rallapalli&Geetha Bali APH Publication 2007

OE-CS-416A	Big Data and Analytics									
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinor TestTotalTime								
2	0	0	2	75	25	100	3 Hrs.			
Purpose	To provide knowledge of Big Data Analytics and Distributed File Systems.									
Course Outcomes (CO)										
CO1	To learn in details the concepts of big data.									
CO2	Expose the criteria of big data analytics and big data storage.									
CO3	To explore knowledge of big data compression techniques.									
CO4	To explor	re learning	of big	data tools	and state-of-the-ar	rt knowle	edge with			
	implementation for big data.									

Big Data Background: Big data definition and features of big data, big data value, development of big data, challenges of big data, NoSQL databases, technologies related to big data including cloud computing, Internet of Things, data center, Hadoop, relationship between IoT and big data, relationship between hadoop and big data, big data generation and acquisition includes data collection, data transmission, data pre-processing, big data applications.

Unit II

Big Data Analytics and Storage: Big data analysis, big data analytic methods and tools, Pig, Hive, Flume, Mahout, Big data storage, distributed storage system for massive data, storage mechanism for big data GFS, HDFS, HBase, MongoDB, Cassandra, big data storage deduplication techniques, fixed-size and variable-size blocks based deduplication, content defined chunking, frequency based chunking, byte and multi-byte indexing techniques, Cloud storage.

Unit III

Big Data Compression: Big data delta compression, Xdelta implementation, Message Digest (MD5), Secure Hash Algorithm (SHA-1/SHA-256), Gear Hash, Tiger Hash, Rabin and Incremental Secure Fingerprint based deduplication, lossless duplicate and similar data elimination approaches, Parallel deduplication and compression using PCOMPRESS, Scalable Decentralized Deduplication Store (SDDS) using Cassandra.

Unit IV

Big Data Processing: Installation procedure with system requirements for Apache Hadoop, Cassandra, Spark, Pig, Hive, HBase, MongoDB large scale distributed storage systems, Map Reduce programming model working, YARN architecture, Apache Pig and Hive architecture, Single node and Multi-nodes Hadoop Cluster Set up and running a Big Data example, NoSQL implementation.

- "Big Data" by Viktor Mayer-Schönberger, Kenneth Cukier, ISBN:978-0544002692, Eamon Dolan/Houghton Mifflin Harcourt 2013.
- "Big Data Now", by O'Reilly Media Inc., ASIN: B0097E4EBQ, O'Reilly 2012.
- "Hadoop Operation", by Eric Sammer, ISBN: 978-1449327057, O'Reilly 2012.
- "MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems", by Donald Miner, Adam Shook, ISBN:978-1449327170, O'Reilly 2012.
- "Programming Hive", by Edward Capriolo, ISBN: 978-1449319335,O'Reilly 2012.
- "HBase: the Definitive Guide", by Lars George, ISBN: 978-1449396107, O'Reilly 2011.

- "Mahout in Action", by Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman, ISBN: 978-1935182689, Manning 2011.
- "Programming Pig", by Alan Gates, ISBN: 978-1449302641, O'Reilly 2011.
- "Cassandra, the Definitive Guide", by Eben Hewitt ISBN: 978-1449390419 O'Reilly 2011.
 "MongoDB: The Definitive Guide" by Kristina Chodorow, Michael Dirolf,ISBN: 978-1449381561, O'Reilly, 2010.